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Abstract

In a Grid environment applications are executed on distributed resources. Applications can be divided into
separate parts for distributed and sequential execution. Typically, complete applications consisting of many parts
may be executed on both local and remote resources. Computing resources may expect some form of payment in
exchange for services used. In this situation there are two scenarios where credit can be claimed: either in increments
by executing parts of an application(fine grained) or by executing a complete application(coarse grained). This
paper presents fine and coarse grained Condensed Graph applications and methods adopted for secure submission
of applications. It also contrasts the payment mechanism for these approaches in WebCom. Many grid middlewares
such as PBS, Torque, LSF and others employ a coarse grained approach for application distribution. Fine grained
execution is partially supported by subdividing the application. Here we show both fine grain and coarse grain
approaches to application distribution.

Keywords: Grid Economy, Trust Management, Keynote, Hash Chain Coins, Fine grained payment, Coarse grained
payment, Condensed Graph

I. INTRODUCTION

Grid environments consist of valuable resources spread across different interconnected domains. This
provides a platform for large scale distributed computing,collaborative computing and service oriented
computing. This environment consists of a variety of resources such as PCs, workstations, supercomputers,
clusters, mainframes and special instruments. Researchers and end users belong to a different domain
of interests capable of executing applications and investigating their execution characteristics. Physical
resources of varying performance are autonomous. Some of these have potential to process simple fine
grained tasks of an application while others have the potential to process the complete application.

Grid middlewares provide a glue for connecting Grid resources. These support various services such
as accounting, queueing, scheduling, application composition, resource and job management, security,
uniform access and charging. Currently, some middlewares provide these services at application and
task/job level. However, most of them only support application level scheduling and not fine grain task/
instruction level scheduling.

A coarse grained application consists of smaller fine grained tasks, each of which might need a particular
resource for its execution. Job Management systems [21] areemployed when scheduling tasks to the
resources. Most of the job management systems guarantee coarse grained application execution through
their queueing system.

Accounting and charging procedures have been implemented in some job management systems. These
methods are generally applied to complete applications rather than to fine grained constituent tasks.
Recently, some accounting and charging [16] [30] methods such as GridBank [9], “Virtual Users” at
Polish National Cluster [3], Template Accounts [17], DGAS [6] and GRACE [13] have been the focus
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of research. In this article, we explain fine grained and coarse grained (complete) application execution
using WebCom. This paper also contrasts on the payment behaviors of both of these methods.

The rest of this paper is organized as follows: Different payment techniques and Security mechanism
are enumerated in Section II further discussion on these is outside the scope of this paper. WebCom and
its application execution is discussed in Section III. Section IV presents the techniques used for both
coarse and fine grained application execution. Section V describes payment for fine grained computing
using WebCom. Section VI describes payment for coarse grained computing using WebCom. Section VII
briefly outlines the workflow involved. Section VIII contrasts the two payment mechanism. Section IX
describes the experimental test-bed, procedures and preliminary results. Finally Section X presents some
conclusions and future work.

II. PAYMENT MECHANISMS AND SECURE CONNECTION EMPLOYED INGRID ENVIRONMENT

A Grid environment which asserts to pay its clients for processing applications and its parts has to adopt
to some payment mechanisms. The payments mechanisms are: Pay as you go, Direct Debit, Contract,
Prepaid scheme, Quota Based. These can be implemented by using digital currency techniques such
as: NetCheque [23], Mojo [1], NetCash [18], Paypal [8], Tokens [4] [29]. Typically, digital currency
payment mechanisms use these security protocols for transactions and interaction. Some of these include
Secure Socket Layer (SSL), Transport Layer Security (TLS) [7], Multilevel Security (MLS), Public Key
Infrastructure(PKI) [28] [2], Kerberos [25] and Role BasedAccess Control(RBAC) [24] / Key Exchange.

III. W EBCOM AND APPLICATION EXECUTION

WebCom [20] is a ‘fledging Grid Operating System’, designed to provide independent service access
through inter-operability with existing middlewares. It is based on the Condensed Graph (CG) [19]
model of Computing, which is a graph based model that uses Directed Acyclic Graphs (DAGs). The
core architecture of WebCom (See Fig. 1) consists of following modules: an engine module, a distributor
module, a fault tolerance module, a security module, communication/connection module, information
module and a job manager module.

Fig. 1. The WebCom Architecture Fig. 2. The WebCom Distributor Module.

The Condensed GraphEngine Module(CGEngine), which executes applications expressed as condensed
graphs by uncovering fireable instructions and placing themin a Pool. The Distributor Moduleperforms
the actions found in the traditional scheduler and load balancer. It receives instructions from the pool
and selects a client to execute an instruction based on configured Policies and Algorithms. Once a
node is selected for distribution, it is placed on to the clients server side allocation queue. TheFault
Tolerance module, monitors client resources and executing applications andreschedules work that was
sent to machines that failed. TheSecurity Modulecan be used to enforce different security policies on



executing applications and user restriction/access. TheCommunication/Connection manager moduleis
responsible for transporting messages to the selected WebComs. TheInformation moduleis responsible
for providing the status of the resources and module information of each WebCom. TheJob Manager
moduleis responsible for tracking the execution of a job across theentire WebCom network.

WebCom separates the application and execution environments by providing both an execution platform
and a development platform. Applications are specified as Condensed Graphs in a manner that is inde-
pendent of the execution architecture. The independence provided by separating these two environments
facilitates computation in heterogeneous environments; the sameCG programs run without change on
a range of implementation platforms, from silicon-based Field Programmable Gate Arrays [22] to the
Java-based WebCom. Fault tolerance, load balancing, scheduling and exploitation of available parallelism
are handled implicitly by WebCom without explicit programmer intervention. Application execution is
initiated by a user on a single WebCom. As nodes become available for execution, they are encapsulated
within messages and passed to the distributor module.

A. Distributor Module

The Distributor Fig. 2 makes decisions on when and where to distribute instructions. Its operation is
dictated by policies supplied both by site owners (statically) and users (at application runtime). Policies
specify the behavior of the Distributor module. These specify settings such as when to request work
and what algorithms to use for load balancing, for example. Algorithms are the Java implementation of
Load Balancing algorithms, e.g. Round Robin and FIFO. Userscan supply their own implementation of
algorithms which can be used by their policies.

Policies provide rules and heuristics that allow the Distributor to make scheduling, load balancing and
communication decisions. The behavior of each WebCom instance is dictated by a hierarchy of policies.
This hierarchy spans administration, system, graph and node policies. The site policy supersedes all others
and is specified by the system owner. Next in the order of precedence is the administration policy, followed
by graph and node policies. Graph policies travel between WebComs with their associated graphs. Node
policies travel with associated nodes. Graph and node policies can supplied by the user at run time.

Policies are specified as text files, and hence changing a policy is low impact, no code re-writing is
needed. Policy changes can be carried out dynamically. Policy specifications can include heuristics such
as pre-staging of data, node priorities and node groupings where, for example, inter-dependant nodes can
be dynamically allocated to the same machine for execution (perhaps due to side-effects).

The Distributor Module has a pool of instructions handed to it by the backplane. It iterates through
this pool examining each instruction and its associated policies to determine if it can be executed locally
or remotely.Client WebComs will then pull those instructions allocated to them.

IV. COARSE AND FINE GRAINED APPLICATION EXECUTION

WebCom expresses applications as Condensed Graphs (CGs). When expressing a problem as a Con-
densed Graph, nodes represents tasks and arcs determine theway these are sequenced for execution. By
altering the connection topology of the graph, various evaluation orders can be specified. Sequencing
constraints can be specified statically by a programmer but they can also be altered dynamically using
feedback from the underlying execution environment.

Nodes in a Condensed Graph can represent fine grained tasks, complete applications or other condensed
graphs. When a node representing aCG, known as a condensed node, is executed, the associatedCG

becomes an independent parallel subcomputation. This process is known as evaporation. An evaporated
graph may contain further condensed nodes; in such a case, evaporation may occur recursively.

Once such a node has completed its operation, a result message is created and returned to the WebCom
that the node was distributed from. This WebCom then incorporates the returned result into the node’s
graph and the execution proceeds. If a remotely distributednode fails to complete its task, the fault-
tolerance module on the distributing WebCom will cause the node to be rescheduled to an alternative
compatible WebCom. If no such WebCom is available, the node is retained for subsequent assignment.



A. Bank

Bank is the authority trusted by the Customer and the WebCom Server (and the clients connected to it).
The policy allows the bank to issue contracts on the servers behalf. Bank is responsible for creating the
contract for the customer, enabling the customer to use specified services offered by the WebCom server.
As discussed in [15], hash chain based micropayments [5] [12] [26] and Keynote Trust Management
[11] [10] [27] is being used for the payment mechanism.

Trust Management is an approach to constructing and interpreting the trust relationships between public
keys that are used to mediate security critical actions. Cryptographic credentials are used to specify
delegation of authorization for services among the public keys. Micropayments scheme are intended to
support very low-value payments and operate as below [15] [14].

• A customer (Payer) generates a hash valuehn(s), wheres is the secret random seed know only to
the customer. This hash value serves as the initial contract.

• h() is a cryptographic one way hash function. It is used to check the validity of the contract and to
avoid forgery.

• n is the number of coins used to credit the Payee (WebCom Server/Provider/WebCom Client) and
debit the customer (Consumer) based on the initial contractvalue.

• [hn−1(s), n− 1, val]...[h1(s), 1, val] is an ordered chain of micropayments forn number of coins and
val is the value of each micropayment.

• The provider (WebCom server/client) can cash in the micropayments at any time and the Payer
(costumer) double checks the credit on his contract to avoidmisuse by the provider.

In this paper fine grained payment system implements the Micropayment technique, where as coarse
grained module follows a payment technique. The Bank acts asthe store keeper of contract/coins with
respect to client/customer and the WebCom server. Thecoin is used to credit the WebCom Server and
debit the client/customer with respect to a contract.

V. FINE GRAINED APPLICATION PAYMENT

Fig. 3. Fine grained node distribution. Fig. 4. Fine grained payment implementation.

A. Fine Grained implementation

The Condensed graphs, when evaporated, can produce fine grain nodes performing tasks ranging from
mathematical operations to more complex complex operations including coupling different middleware
technologies and even executing complete applications.

In the fine grained implementation, Fig. 4, the complete CG application is submitted to WebCom along
with the contract and the payment. There is a trust (Fig. 10) between the WebCom Server, the Bank
and a Customer. This contract is analyzed by the WebCom payment module with respect to authenticity



Authorizer: ”POLICY”
Local-Constants: Bank1 = Banks public key
Conditions: (@Value * @Number<= 5000) ||
(Service == ”X” || Service == ”Y”;)
Licensees: Bank1

Fig. 5. Fine grained: Sample Policy stating that the bank is authorized to issue contracts

Authorizer: Bank1
Local-Constants: Bank1 = Bank1’s public key
client = client1’s public key
Conditions: @Value == 1 && @Number<=5000 && Contract == ”1Ie0ohmzifz/N3JoX4m9Dw==”;
Licensees: client1
Signature:Signed by the banks private key

Fig. 6. Sample fine grained Keynote credential

and authorization of the contract. Once the contract is accepted, WebCom unfolds the Condensed Graph
application and subcontracts each of its nodes for execution on connected clients. In this contract, the
WebCom clients executing the work get the subcontracted nodes and their payment will be released when
node execution is complete. There are two steps in this contract: firstly, the contract has to be accepted
by the WebCom server and secondly, the WebCom Server then subcontracts the fine grained nodes to
connected clients.

B. Contract

Figure 5 describes a sample trusted Keynote credential. This credential defines the conditions under
which the server allows the bank to issue contracts. These conditions are defined by using a C-like
expression syntax in terms of attributes Val(value of the coin val), Number (number of coinsn in the
contract) and Service(Which services the server is willingto accept payments for. These services could
reflectCGs that the server is willing to execute).

Figure 6 provides an example payment contract that a customer (public key client1) buys from the
bank,Bank1. It is signed by the banks private key, delegating authorityover the contract to the customer.
The contract attribute provides the initial contract valuehn(s) wheres is the secret seed known only to
the customer. This particular contract is for less than or upto a maximum of 5000 coins valued at EUR1.0
each. Alternatively, the bank could decide to write a different credential that delegates to the customers
the authority to generate contracts.

VI. COARSE GRAINED APPLICATION PAYMENT

A. Coarse Grained Implementation

In the coarse grained implementation, Fig. 8, the complete CG is submitted to WebCom along with
the contract and the payment. Similar to Section V, trust is established. When the Server analyses the
contract, subtasks may be scheduled to clients. In contrast, using coarse grained application payment,
clients receive no payments for work they execute on the servers behalf: payment is made only to the
WebCom server.

B. Contract

Figure 9 shows a coarse grained payment credential that a customer (public keyCustomer) buys from
Bank1. It is signed by the banks private key, delegating the contracts authority to the customer. The



Fig. 7. Coarse grained secure application submission. Fig. 8. Coarse grained payment implementation.

Authorizer: Bank1
Local-Constants: Bank1 = Bank’s public key
Customer = Customer’s public key
Conditions: Service ==“X” && Contract ==”wnrz9kYOsQl5rbNm/H9oVg==” && @Operand<= ”10”;
Licensees: Customer
Signature: Signed by banks private key

Fig. 9. Sample Coarse grained Keynote credential

contract attribute provides the initial contract valuehn(s) wheres is the secret seed known only to the
customer, and n is the number of coins. The operand value is used to limit the work done by the client.
Here, the customer has paid for the ability to execute graph Xfor an input value up to and including 10.
This price negotiation is done between the bank and the server. The server notifies the bank of which
services it will execute and their respective price range. e.g., Input value from 0 to 10, for a cost of 10,
input value from 11 to 20 for a cost of 20 and so on.

VII. W ORKFLOW FOR THE FINE AND COARSE GRAINED APPROACHES

Fig. 10. Trust Fig. 11. Workflow.

Fig. 11 shows the flow of tasks for both the fine and coarse grained implementations. There is a trust
between the bank, the customers and the WebCom resources. The flow of work through the system is as
follows:



1) The customer sends the contract and payment to the Bank,
2) The Bank signs the contract and returns it to the customer,
3) The customer then sends the contract to the WebCom server.The WebCom server stores the contract,
4) The customer submits theCG and payment to the WebCom server,
5) The WebCom server executes the Graph based on the validityof the payment and sends the results

back to the customer.

VIII. C ONTRASTS BETWEEN THE PAYMENT METHODS

A. Coarse grained payment

• Jobs are not restricted by the underlying security implementations. This allows for almost no speed
decrease, however, each party might either pay too much for the computation received, or get paid
to little for computation given.

• There is a need to estimate the time of execution to be able to specify a price.
• There is one contract and one coin associated with this mode of payment.
• There is a Secure Socket Layer (SSL) connection between the customer and the WebCom server.

Other clients connected to the WebCom server may or may not beover a secure connection.

B. Fine grained payment

• There is an overhead in generating the coin. However, the impact of this overhead is low.
• Payment is done on a per task and not per job. This reduces the risk of doing more work than what

was paid for.
• There is an SSL connection between the customer and the WebCom server, and connected clients

connected.
• There is an overhead due to the SSL and Trust Management implementation.

IX. EXPERIMENTAL SETUP AND RESULTS

The experimental testbed consisted of executing a sample application a number of times. Experimental
data was collected from the execution profile of the Factorial Condensed Graph, Figure 12, when executed
with parameter 1000.

The experimental configuration consisted of six Pentium IV’s running at 2.6GHz with 1GB RAM. Each
machine was running Fedora Linux. A two tier topology with one master and with five clients was used.

Fig. 12. factorial graph Fig. 13. Benchmarking fine,coarse and normal execution.

The object of this experiment was to ascertain the overhead in using Trust Management and SSL for
fine grained execution. Due to the nature of the graph very little speedup is obtained by adding extra



machines into the computation. This is due to the fact that each iteration of the graph yields only four
executable instructions. This can be clearly seen from the results shown in Figure 13.

Credentials were deployed on the clients to facilitate experimentation with both fine and coarse grained
application execution.

When executing in Normal mode there is no SSL or Trust Management used between the server and
clients. There is also no SSL used between the customer and server.

When executing in Coarse Grained mode, Trust Management andSSL are used only between the server
and customer. There is no Trust Management and SSL between the server and clients.

Finally, when using Fine Grained mode there is full SSL and Trust management between all connections.
From the graph shown in Figure 13, it can be seen that there is little variation in the execution profile

between both Normal and Course Grain modes. This is due to thefact that only one SSL and Trust
Management operation is carried out when the application isexecuted.. The cost of this operation is
negligible.

When executing in Fine Grain mode, it can be clearly seen the overheat caused be the use of SSL and
Trust Managements is approximately 33%. This can also be attributed to the grain size of the task as well
as the grain size of the application. Fine grained tasks in a Fine Grained application will be more costly.

Speedup was clearly affected by the type of graph selected. Although not a consideration in this example,
speedup would be obtained where a graph that could better exploit parallelism would be employed. This
is a subject of future work.

X. CONCLUSION AND FUTURE DIRECTIONS

This paper briefly outlined two different payment mechanisms used for executing applications in a
distributed environment. They have been implemented as fineand coarse grained application execution
models. Contrasts between these two payment mechanisms were enumerated. It is expected that these
methods are appropriate for Grid computing, as resources joining and utilising the Grid have varying
requirements and capabilities. The payment modles presented can easily cater for the differing levels of
both task and resource granularity.

The experimental results show that there is a slight overhead on between the coarse payment imple-
mentation over the normal implementation (without payment). In contrast, there is a significant overhad
between these and the fine grained implementation. This is primarily due to the application characteristics.
It is apparent that fine grained tasks executing in a fine grained application mode (full trust management
and SSL) will cost more than large grained tasks executing inthe same mode. This is due to the overhead
involved in carrying out Trust Management and SSL computations.

A number of areas of future work have been identified. Firstly, define a class of application that these
mechanisms would be more suited towards, example highly parallel applications with large grainsize oper-
ations. Investigate the use of Subscription based computing, in particular post paid (billing) mechanisms.
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