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Abstract

In a Grid environment applications are executed on distedbuesources. Applications can be divided into
separate parts for distributed and sequential executigpicdlly, complete applications consisting of many parts
may be executed on both local and remote resources. Corgpesources may expect some form of payment in
exchange for services used. In this situation there are tenagios where credit can be claimed: either in increments
by executing parts of an application(fine grained) or by akeg a complete application(coarse grained). This
paper presents fine and coarse grained Condensed Grapbasippé and methods adopted for secure submission
of applications. It also contrasts the payment mechanisrthfse approaches in WebCom. Many grid middlewares
such as PBS, Torque, LSF and others employ a coarse graipedaap for application distribution. Fine grained
execution is partially supported by subdividing the apgien. Here we show both fine grain and coarse grain
approaches to application distribution.

Keywords: Grid Economy, Trust Management, Keynote, HaskirCBoins, Fine grained payment, Coarse grained
payment, Condensed Graph

I. INTRODUCTION

Grid environments consist of valuable resources spreamsadifferent interconnected domains. This
provides a platform for large scale distributed computiogjjaborative computing and service oriented
computing. This environment consists of a variety of resesiisuch as PCs, workstations, supercomputers,
clusters, mainframes and special instruments. Researamet end users belong to a different domain
of interests capable of executing applications and ingastig their execution characteristics. Physical
resources of varying performance are autonomous. Someesé thave potential to process simple fine
grained tasks of an application while others have the piatietat process the complete application.

Grid middlewares provide a glue for connecting Grid resesrcThese support various services such
as accounting, queueing, scheduling, application comipasiresource and job management, security,
uniform access and charging. Currently, some middlewaresige these services at application and
task/job level. However, most of them only support appiaatevel scheduling and not fine grain task/
instruction level scheduling.

A coarse grained application consists of smaller fine gdhtasks, each of which might need a particular
resource for its execution. Job Management systems [21k@amgloyed when scheduling tasks to the
resources. Most of the job management systems guarantese qgrained application execution through
their queueing system.

Accounting and charging procedures have been implementedme job management systems. These
methods are generally applied to complete applicationserathan to fine grained constituent tasks.
Recently, some accounting and charging [16] [30] method$ sas GridBank [9], “Virtual Users” at
Polish National Cluster [3], Template Accounts [17], DGAG fnd GRACE [13] have been the focus
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of research. In this article, we explain fine grained and sea@rained (complete) application execution
using WebCom. This paper also contrasts on the payment toebaf both of these methods.

The rest of this paper is organized as follows: Differentrpagt techniques and Security mechanism
are enumerated in Section Il further discussion on thesetside the scope of this paper. WebCom and
its application execution is discussed in Section Ill. #ectV presents the techniques used for both
coarse and fine grained application execution. Section ¢ritess payment for fine grained computing
using WebCom. Section VI describes payment for coarse ggatomputing using WebCom. Section VII
briefly outlines the workflow involved. Section VIII conttasthe two payment mechanism. Section IX
describes the experimental test-bed, procedures andngmaly results. Finally Section X presents some
conclusions and future work.

II. PAYMENT MECHANISMS AND SECURE CONNECTION EMPLOYED INGRID ENVIRONMENT

A Grid environment which asserts to pay its clients for pesteg applications and its parts has to adopt
to some payment mechanisms. The payments mechanisms grasBau go, Direct Debit, Contract,
Prepaid scheme, Quota Based. These can be implemented ray digital currency techniques such
as: NetCheque [23], Mojo [1], NetCash [18], Paypal [8], Takd4] [29]. Typically, digital currency
payment mechanisms use these security protocols for tamss and interaction. Some of these include
Secure Socket Layer (SSL), Transport Layer Security (TLZ) Nultilevel Security (MLS), Public Key
Infrastructure(PKI) [28] [2], Kerberos [25] and Role Basi&dcess Control(RBAC) [24] / Key Exchange.

I1l. WEBCOM AND APPLICATION EXECUTION

WebCom [20] is a ‘fledging Grid Operating System’, designegbrtovide independent service access
through inter-operability with existing middlewares. # based on the Condensed Graph (CG) [19]
model of Computing, which is a graph based model that usescigid Acyclic Graphs (DAGs). The
core architecture of WebCom (See Fig. 1) consists of foll@amodules: an engine module, a distributor
module, a fault tolerance module, a security module, comaation/connection module, information
module and a job manager module.
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Fig. 1. The WebCom Architecture Fig. 2. The WebCom Distributor Module.

cccccc

m 2 P = U X Ol

The Condensed Gragingine Modulg CGEngine), which executes applications expressed asosed
graphs by uncovering fireable instructions and placing tirem Pool. The Distributor Module performs
the actions found in the traditional scheduler and load rzaa It receives instructions from the pool
and selects a client to execute an instruction based on coefigfolicies and Algorithms. Once a
node is selected for distribution, it is placed on to thertbeserver side allocation queue. TRault
Tolerance modulemonitors client resources and executing applications rasdhedules work that was
sent to machines that failed. Ti&ecurity Modulecan be used to enforce different security policies on



executing applications and user restriction/access. Chmmunication/Connection manager modige
responsible for transporting messages to the selected ebCThelnformation modulds responsible
for providing the status of the resources and module inftonaof each WebCom. Thdob Manager
moduleis responsible for tracking the execution of a job acrossethtege WebCom network.

WebCom separates the application and execution envirotsrbgrproviding both an execution platform
and a development platform. Applications are specified asd€osed Graphs in a manner that is inde-
pendent of the execution architecture. The independermadad by separating these two environments
facilitates computation in heterogeneous environmemis;sameC'G programs run without change on
a range of implementation platforms, from silicon-basedld=iProgrammable Gate Arrays [22] to the
Java-based WebCom. Fault tolerance, load balancing, slthgdnd exploitation of available parallelism
are handled implicitly by WebCom without explicit prograramintervention. Application execution is
initiated by a user on a single WebCom. As nodes become halailar execution, they are encapsulated
within messages and passed to the distributor module.

A. Distributor Module

The Distributor Fig. 2 makes decisions on when and where strildute instructions. Its operation is
dictated by policies supplied both by site owners (stdiigand users (at application runtime). Policies
specify the behavior of the Distributor module. These dpesettings such as when to request work
and what algorithms to use for load balancing, for examplgoAthms are the Java implementation of
Load Balancing algorithms, e.g. Round Robin and FIFO. Usarssupply their own implementation of
algorithms which can be used by their policies.

Policies provide rules and heuristics that allow the Distror to make scheduling, load balancing and
communication decisions. The behavior of each WebComnist#s dictated by a hierarchy of policies.
This hierarchy spans administration, system, graph aneé poticies. The site policy supersedes all others
and is specified by the system owner. Next in the order of pleroee is the administration policy, followed
by graph and node policies. Graph policies travel betweehGliens with their associated graphs. Node
policies travel with associated nodes. Graph and nodeipslcan supplied by the user at run time.

Policies are specified as text files, and hence changing aypislilow impact, no code re-writing is
needed. Policy changes can be carried out dynamicallycyPspecifications can include heuristics such
as pre-staging of data, node priorities and node groupiriggay for example, inter-dependant nodes can
be dynamically allocated to the same machine for execupenh@ps due to side-effects).

The Distributor Module has a pool of instructions handedttbyi the backplane. It iterates through
this pool examining each instruction and its associatetigslto determine if it can be executed locally
or remotely.Client WebComs will then pull those instruosoallocated to them.

V. COARSE AND FINE GRAINED APPLICATION EXECUTION

WebCom expresses applications as Condensed Grafihs)( When expressing a problem as a Con-
densed Graph, nodes represents tasks and arcs determiwvayttibese are sequenced for execution. By
altering the connection topology of the graph, various watibn orders can be specified. Sequencing
constraints can be specified statically by a programmer Heyt tan also be altered dynamically using
feedback from the underlying execution environment.

Nodes in a Condensed Graph can represent fine grained taskglete applications or other condensed
graphs. When a node representing’&, known as a condensed node, is executed, the associdted
becomes an independent parallel subcomputation. Thiegsos known as evaporation. An evaporated
graph may contain further condensed nodes; in such a cameor@ion may occur recursively.

Once such a node has completed its operation, a result neeissaigeated and returned to the WebCom
that the node was distributed from. This WebCom then inaajes the returned result into the node’s
graph and the execution proceeds. If a remotely distributede fails to complete its task, the fault-
tolerance module on the distributing WebCom will cause tbdento be rescheduled to an alternative
compatible WebCom. If no such WebCom is available, the nedetained for subsequent assignment.



A. Bank

Bank is the authority trusted by the Customer and the WebCeive® (and the clients connected to it).
The policy allows the bank to issue contracts on the servers behalik Baresponsible for creating the
contractfor the customer, enabling the customer to use specifiedcssroffered by the WebCom server.
As discussed in [15], hash chain based micropayments [3][&] and Keynote Trust Management
[11] [10] [27] is being used for the payment mechanism.

Trust Management is an approach to constructing and irgtngrthe trust relationships between public
keys that are used to mediate security critical actionsptgyraphic credentials are used to specify
delegation of authorization for services among the pubdéigsk Micropayments scheme are intended to
support very low-value payments and operate as below [14] [1

« A customer (Payer) generates a hash valugs), wheres is the secret random seed know only to

the customer. This hash value serves as the initial contract

. h() is a cryptographic one way hash function. It is used to chaekvalidity of the contract and to

avoid forgery.

« nis the number of coins used to credit the Payee (WebCom SBreeider/WebCom Client) and

debit the customer (Consumer) based on the initial contralcie.

o [R"7Y(s),n—1,val]...[h'(s), 1,val] is an ordered chain of micropayments fonumber of coins and

val is the value of each micropayment.

« The provider (WebCom server/client) can cash in the migyogts at any time and the Payer

(costumer) double checks the credit on his contract to anoglise by the provider.

In this paper fine grained payment system implements theddayment technique, where as coarse
grained module follows a payment technique. The Bank acthestore keeper of contract/coins with
respect to client/customer and the WebCom server. ddie is used to credit the WebCom Server and
debit the client/customer with respect to a contract.

V. FINE GRAINED APPLICATION PAYMENT
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Fig. 3. Fine grained node distribution. Fig. 4. Fine grained payment implementation.

A. Fine Grained implementation

The Condensed graphs, when evaporated, can produce fimeng@deés performing tasks ranging from
mathematical operations to more complex complex opemtinaluding coupling different middleware
technologies and even executing complete applications.

In the fine grained implementation, Fig. 4, the complete C@iegtion is submitted to WebCom along
with the contract and the payment. There is a trust (Fig. H¥veen the WebCom Server, the Bank
and a Customer. This contract is analyzed by the WebCom patymedule with respect to authenticity



Authorizer: "POLICY”

Local-Constants: Bankl = Banks public key
Conditions: (@Value * @Numbex= 5000) ||
(Service == "X" || Service =="Y";)

Licensees: Bankl

Fig. 5. Fine grained: Sample Policy stating that the bankutbarized to issue contracts

Authorizer: Bank1l

Local-Constants: Bankl = Bank1l's public key

client = clientl’s public key

Conditions: @Value == 1 && @Number=5000 && Contract == "1le0ohmzifz/N3JoX4m9Dw==";
Licensees: clientl

Signature:Signed by the banks private key

Fig. 6. Sample fine grained Keynote credential

and authorization of the contract. Once the contract isgede WebCom unfolds the Condensed Graph
application and subcontracts each of its nodes for exetutio connected clients. In this contract, the
WebCom clients executing the work get the subcontracteésadd their payment will be released when
node execution is complete. There are two steps in this @cmntfirstly, the contract has to be accepted
by the WebCom server and secondly, the WebCom Server thesosincts the fine grained nodes to
connected clients.

B. Contract

Figure 5 describes a sample trusted Keynote credentiaé diledential defines the conditions under
which the server allows the bank to issue contracts. Thesdittons are defined by using a C-like
expression syntax in terms of attributes Val(value of than a@l), Number (number of coins in the
contract) and Service(Which services the server is willm@ccept payments for. These services could
reflect CGs that the server is willing to execute).

Figure 6 provides an example payment contract that a custqmélic key clientl) buys from the
bank,Bankl It is signed by the banks private key, delegating autharitgr the contract to the customer.
The contract attribute provides the initial contract vahi¢s) wheres is the secret seed known only to
the customer. This particular contract is for less than oroug maximum of 5000 coins valued at EUR1.0
each. Alternatively, the bank could decide to write a ddfdrcredential that delegates to the customers
the authority to generate contracts.

VI. COARSE GRAINED APPLICATION PAYMENT
A. Coarse Grained Implementation

In the coarse grained implementation, Fig. 8, the complétei€submitted to WebCom along with
the contract and the payment. Similar to Section V, trustsigldished. When the Server analyses the
contract, subtasks may be scheduled to clients. In contmasig coarse grained application payment,
clients receive no payments for work they execute on theeseriehalf: payment is made only to the
WebCom server.

B. Contract

Figure 9 shows a coarse grained payment credential thattancess (public keyCustome) buys from
Bankl It is signed by the banks private key, delegating the cetgrauthority to the customer. The



Oy €6 Application

Creditis gaine:
by executing the
entire CG application

WebCom
Server

Work
Contract
Pay

“% 3 L

Cust 0

SEECIRES WebCom Server n‘[l J.JQ
—

WebCom Clients

WebCom
Clients

) Node/job/task

Fig. 7. Coarse grained secure application submission. Fig. 8. Coarse grained payment implementation.

Authorizer: Bankl

Local-Constants: Bankl = Bank’s public key

Customer = Customer’s public key

Conditions: Service ==*X" && Contract =="wnrz9kYOsQI5rbN/H90Vg=="&& @Operand<= "10";
Licensees: Customer

Signature: Signed by banks private key

Fig. 9. Sample Coarse grained Keynote credential

contract attribute provides the initial contract valkigs) wheres is the secret seed known only to the
customer, and n is the number of coins. The operand valueers taslimit the work done by the client.

Here, the customer has paid for the ability to execute gragbr>n input value up to and including 10.
This price negotiation is done between the bank and the isefte server notifies the bank of which
services it will execute and their respective price rangg., énput value from O to 10, for a cost of 10,
input value from 11 to 20 for a cost of 20 and so on.

VII. W ORKFLOW FOR THE FINE AND COARSE GRAINED APPROACHES
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Fig. 10. Trust Fig. 11. Workflow.

Fig. 11 shows the flow of tasks for both the fine and coarse gdaimplementations. There is a trust
between the bank, the customers and the WebCom resouraceglowhof work through the system is as
follows:



1) The customer sends the contract and payment to the Bank,

2) The Bank signs the contract and returns it to the customer,

3) The customer then sends the contract to the WebCom s&hakVebCom server stores the contract,

4) The customer submits teéG and payment to the WebCom server,

5) The WebCom server executes the Graph based on the vaiiditye payment and sends the results
back to the customer.

VIIl. CONTRASTS BETWEEN THE PAYMENT METHODS
A. Coarse grained payment

« Jobs are not restricted by the underlying security implaatems. This allows for almost no speed
decrease, however, each party might either pay too muchhércomputation received, or get paid
to little for computation given.

« There is a need to estimate the time of execution to be ablpeaifg a price.

« There is one contract and one coin associated with this mbgayment.

« There is a Secure Socket Layer (SSL) connection betweenusterner and the WebCom server.
Other clients connected to the WebCom server may or may noveea secure connection.

B. Fine grained payment

« There is an overhead in generating the coin. However, thedngf this overhead is low.

« Payment is done on a per task and not per job. This reducessthefrdoing more work than what
was paid for.

« There is an SSL connection between the customer and the Wels€over, and connected clients
connected.

« There is an overhead due to the SSL and Trust Managementnraptation.

IX. EXPERIMENTAL SETUP AND RESULTS

The experimental testbed consisted of executing a samplecapon a number of times. Experimental
data was collected from the execution profile of the Fadt@andensed Graph, Figure 12, when executed
with parameter 1000.

The experimental configuration consisted of six Pentiuns iMinning at 2.6GHz with 1GB RAM. Each
machine was running Fedora Linux. A two tier topology witreanaster and with five clients was used.
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Fig. 12. factorial graph Fig. 13. Benchmarking fine,coarse and normal execution.

The object of this experiment was to ascertain the overheaging Trust Management and SSL for
fine grained execution. Due to the nature of the graph vetlg lgpeedup is obtained by adding extra



machines into the computation. This is due to the fact thah egration of the graph yields only four
executable instructions. This can be clearly seen from éBalts shown in Figure 13.

Credentials were deployed on the clients to facilitate @rpentation with both fine and coarse grained
application execution.

When executing in Normal mode there is no SSL or Trust Manag¢msed between the server and
clients. There is also no SSL used between the customer aver.se

When executing in Coarse Grained mode, Trust Managemer$8hdare used only between the server
and customer. There is no Trust Management and SSL betweesetlier and clients.

Finally, when using Fine Grained mode there is full SSL angsTmanagement between all connections.

From the graph shown in Figure 13, it can be seen that thertlésMariation in the execution profile
between both Normal and Course Grain modes. This is due tdatitethat only one SSL and Trust
Management operation is carried out when the applicatioexexuted.. The cost of this operation is
negligible.

When executing in Fine Grain mode, it can be clearly seen vleeheat caused be the use of SSL and
Trust Managements is approximately 33%. This can also bibwttd to the grain size of the task as well
as the grain size of the application. Fine grained tasks ima Grained application will be more costly.

Speedup was clearly affected by the type of graph selectétbégh not a consideration in this example,
speedup would be obtained where a graph that could bettésiegprallelism would be employed. This
is a subject of future work.

X. CONCLUSION AND FUTURE DIRECTIONS

This paper briefly outlined two different payment mecharssased for executing applications in a
distributed environment. They have been implemented asafimecoarse grained application execution
models. Contrasts between these two payment mechanisnesemamerated. It is expected that these
methods are appropriate for Grid computing, as resourdesmgpand utilising the Grid have varying
requirements and capabilities. The payment modles predearan easily cater for the differing levels of
both task and resource granularity.

The experimental results show that there is a slight overloeabetween the coarse payment imple-
mentation over the normal implementation (without payrelmt contrast, there is a significant overhad
between these and the fine grained implementation. Thisrsapity due to the application characteristics.
It is apparent that fine grained tasks executing in a fine gdaapplication mode (full trust management
and SSL) will cost more than large grained tasks executirthersame mode. This is due to the overhead
involved in carrying out Trust Management and SSL compotesti

A number of areas of future work have been identified. Firstgfine a class of application that these
mechanisms would be more suited towards, example highBllphapplications with large grainsize oper-
ations. Investigate the use of Subscription based congputinparticular post paid (billing) mechanisms.
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