
IMPLEMENTATION OF TYPE CHECKING IN WEBCOM

    

   

     , ,

       

    ( )

Daith́ı Ó Crualaoich

September 2005

Abstract

This work approaches the problem of developing and implementing new functionality within the WebCom

system, while simultaneously preserving the integrity of the software core of this system. This problem is

addressed within the context of developing type checking support for Condensed Graph execution, although

is not limited to this specific application. The key portion is the design and implementation of support

functionality to assist third-party WebCom development.

Much of the discussion concerns introducing new programming paradigms and practices, including those

of Aspect Oriented, Event-based, and Logic Programming models. Other areas covered in the methodolo-

gies and extension schemes suggested include the provisionof WebCom metainformation, generic WebCom

invocation, the minimization of code pollution, the implementation of WebCom modules, and a module

framework including loading semantics.

The type checking example combines these various technologies, illustrating how they support third-party

development of WebCom functionality. The results of this work include improved WebCom internals design,

facility to employ aspect oriented and logic programming practices, type checking, metadata notations, as

well as a wide range of actual applications from mobile phoneWebCom invocation tools to desktop WebCom

execution environments.

THE GRAYS HOPE TO WIN. STOP.

RAINBOW NEEDED URGENTLY. STOP.

— Subcomandante Marcos

Truth is a shining goddess, always veiled,

always distant, never wholly approachable,

but worthy of all the devotion of which

the human spirit is capable.

— Bertrand Russell

Apologies and Acknowledgments

I am delighted to acknowledge and graciously appreciate the fantastic assistance provided to me by my

supervisor, Dr. J.P.Morrison, and by the Centre for Unified Computing. Their insightful advice has been

of great use in all aspects of this work. If I have failed to convert this advice into a document equal to its

measure, then I am solely at fault.

I also want to appreciate my internal and external readers for their efforts. And especially, I should like to

apologise for the typographical errors and stilted prose towhich I have subjected them. I have little to offer

in my defense, save to express the disheartening frustration that every draft revision made to defeat these evil

mistakes, only seemed to introduce new ones. My admiration for perfect prose has reached new levels.

This work has been funded by Science Foundation Ireland and by the National Development Plan.

Dedicated to the College. Thank you, most grateful thank you, Plato, for your Academy. May there

always be ivory towers and dreamy spires. Although, we mightbe able to make do without Oxford.

ii

Contents

Apologies and Acknowledgments ii

Contents iii

1 Introduction 1

1.1 What are Condensed Graphs? 1

1.1.1 The Node Execution Triple 3

1.1.2 Graphs .. 5

1.1.3 Stemming and Port Strictness 8

1.1.4 Condensation 11

1.2 What is WebCom? 12

1.2.1 Past and Future Trends 14

Chapter Notes 14

2 Information Framework 15

2.1 Meta Information Motivation 15

2.2 Parallels with BeanInfo 17

2.3 UML Outline 18

2.4 (Potential) WebCom Applications of the Information Framework 22

2.4.1 Documentation Provision 23

2.4.2 Type Checking 25

2.4.3 Submission Framework 25

Chapter Notes 34

3 Aspects and the Event API 35

3.1 Introduction to Aspects 35

3.1.1 Crosscutting Concerns 37

3.1.2 Join points, Pointcuts and Advice 38

3.1.3 Example Aspects 40

iii

3.1.4 Aspect Use in WebCom 43

3.2 Event API 44

3.2.1 Aspect based event system 45

3.2.2 Event API Implementation 47

3.2.3 Applications 50

3.2.4 Final remarks 51

Chapter Notes 52

4 Module API 53

4.1 Module API 53

4.1.1 Philosophy 54

4.1.2 Design .. 58

4.2 Example Modules Employing the Module API Architecture 64

4.2.1 Statistics Module 64

4.2.2 SysTray, IDE Bridge and Other GUI Modules 67

4.2.3 BeanShell 70

4.2.4 Future Directions 70

Chapter Notes 72

5 Logic Programming in WebCom 73

5.1 Resolver 74

5.1.1 Logic Elements 74

5.1.2 Unifier Code .. . 77

5.1.3 Resolver Engine 78

5.2 Example: Typing Language 85

5.3 Example: Security Reduction Rules 90

Chapter Notes 92

6 Type Checking 93

6.1 Parser 93

6.2 Runtime Type Checking Problem 96

6.3 Designtime Type Checking 99

6.4 Substitution Reconciliation 102

6.5 Type Checker Modules 103

6.6 Finally. 104

Chapter Notes 105

Appendix A — NodeInfo Example 106

iv

Appendix B — Event Trace 109

Appendix C — Unification Algorithm 113

Appendix D — Types Logic Grammar 114

Bibliography 116

v

1
Introduction

This dissertation concerns type checking in the WebCom implementation of the Condensed Graph

model. It also variously deals with software module design,the use of aspects in event driven pro-

gramming, the specification and execution of task descriptions, and other topics that may also arise.

It is best to begin here by describing the Condensed Graph model and the WebCom implementation in

outline at least. Exhausting detail will be provided at the appropriate points in the following chapters, so

herein it is preferable to outline the broadstrokes of the Condensed Graph mission.

The following chapters, on the supporting Information Framework, on the event system, and on module

organization are somewhat new components1 of WebCom designed or improved to meet the type checking

implementation difficulties in a uniform and generalisable fashion. They represent interesting adventures

in their own rights also and merit the careful study. This dissertation concludes with an examination and

implementation of the core concern, the new type checking system. So toward that end, this dissertation

begins by considering and outlining the Condensed Graph model.

1.1 What are Condensed Graphs?

The Condensed Graph (CG) model is a computation paradigm based on directed acyclic graphs (DAGs).

While there may be superficial similarities with existing DAGbased workflow packages, and although work-

flow is an application area in which Condensed Graphs excel, Condensed Graphs arenot simply yet another

1

1.1 What are Condensed Graphs?

workflow solution. This view neglects particular features of the Condensed Graph model that conspire to

produce a highly flexible and applicable programming environment.

§1 Granularity. ≪A treatment of the wide applicability of the Condensed Graphmodel, and an outline of the various levels of

operation granularity supported thereby. Examples of existing application platforms≫

As the Condensed Graph system was initially designed to support parallel computation, the original target

architectures were larger multiprocessor systems. However, given the aggressive adoption of parallel tech-

niques throughout the spectrum of computer design, the Condensed Graphs model can be comfortably applied

to systems at all levels in the computer architecture food chain, from embedded systems to Grids.

The node object constitutes the fundamental parallelisable software artifact in the Condensed Graphs

model. Nodes themselves are in fact just containers for the elements that define the desired computational

task. One of these elements being the operation component makes control of the parallelisable task granu-

larity possible. Key to the Condensed Graph model is easy andpowerful accommodation of operations with

variable granularities. Grain sizes ranging from the trivial to the vast and time consuming are compatible.

This flexible grain size is both practical and feasible also.Condensed Graphs can and have been applied

in Field Programmable Gate Arrays (FPGAs), in mobile and embedded devices with J2ME, in desktop and

serve systems, in networks of desktop systems, in Beowolf clusters and in Grid Computing.

Operations themselves need not be of overt numerical computation character either. Scheduling, work-

flow, security based, information organisation, database transactions, middleware invocation, expense ac-

count authorisations or literally any possible computation task or combination thereof is suitable.

§2 Parallelism. ≪An examination of the role of parallelism in the developmentand operation of the Condensed Graph model≫

The flexible operation grain size is just one aspect of the parallelism support provided in the Condensed

Graph framework. More interesting than nodes themselves, is how nodes can be combined.

The Condensed Graph model allows for nodes to be scheduled inimperative, lazy, or eager evaluation

modes, or uniquely, in any combination of these modes. A computation designer has precise facility to

specify how individual nodes are to be computationally executed. For example, a designer may indicate

certain nodes that arrange a seldom used computation are to be executed lazily if required, while at the same

time, the designer can indicate that the critical path of thegraph based computation should be performed

eagerly in order to minimise the total execution time of the graph.

Crucially, this blending of speculation with conservativeexecution is garbage free. The model semantics

provide for the automatic and efficient removal of unrequired speculation and associated junk.2

§3 Paradigm. ≪Discussion of the Condensed Graphs model from the perspective of programming paradigms and methodologies≫

In so far as the Condensed Graph model is language independent, and combines the imperative, lazy and eager

computation models, it forms a separate computational paradigm. Its implementation as an augmentation of

existing programming languages mirrors that of Object Oriented (OO) systems.3

2

1.1 What are Condensed Graphs?

The primacy of the intrinsic graph representation should beemphasised since it distinguishes the Con-

densed Graph paradigm from other augmentative paradigms such as the OO model. The Condensed Graph

model is inherently wedded to the graph executable artifactwhereas the OO model arranges computation by

client-server message transactions. The structure of an OOexecution is not an explicit entity in the paradigm

in the same way as a Condensed Graph is central to the Condensed Graph model.

There is also large variation in how the Condensed Graph paradigm is applied to arrange computation.

Condensed Graphs are often the main execution mechanism driving a parallel or serial computation. How-

ever, they are also often used as middleware “glue” to leverage distinct systems into collaborative execution.

§4 Word of Warning. ≪A cautionary tale about the Condensed Graph learning curve≫

It ought to be noted that the flexibility of the Condensed Graph system comes with a price, not necessarily

paid in computational overhead.4 The initial exposition of the Condensed Graphs system and the mechanisms

by which it acquires much flexibility are a typical stumblingblock for novices. Much of this learning curve

can be attributed to basic lack of familiarity with DAG basedsystems in general, but it remains true that

learning the correct mode of thinking in Condensed Graph design does require some time.

This is not especially surprising considering that novice users face similar difficulties with other computa-

tional paradigms such as OO, Aspect Oriented Programming, Functional Programming, and Logic Program-

ming. As with many of these technologies, the implementation of intuitive tools to support the development

process is essential to alleviating initial obstacles to adoption. Indeed, tools such as Condensed Graph visual

designers and debuggers are the focus of keen current development.

§5 Section Map. ≪A brief guide to the remaining portions of this chapter≫

What follows constitute a effort to provide a sufficiently detailed operational description of the Condensed

Graph model for the purposes required in this dissertation.Many important implementational and machine

details are neglected. The reader is referred to other sources for more complete understanding of the machine

specifications. [Mor96, MRb, MRa]

1.1.1 The Node Execution Triple

Computation is engineered by the aggregation of a computational triple consisting of an operator with which

to act, operands upon which to act, and destinations to whichthe computation output is propagated. Nodes

deal precisely with this conjunction and can be thought of asempty socket boxes onto which these separate

computational elements are attached. Nodes exist within graphs, the arcs of which indicate the mechanism

by which the computational elements are delivered to nodes.

Once the execution machine has conspired to present an operator, the correct number of operands and at

least one destination to a node, the node is then capable of firing(or reducing.) The firing of a node, scheduled

in some fashion by the execution machine, triggers the execution of the computation described by the node.

The result of this computation is then forwarded to the indicated destinations.

3

1.1 What are Condensed Graphs?

statically assigned here.
Operators arrive or are

Operator Port

statically assigned here.

Destination Port

Destinations arrive or are
equivalents arrive here.
Operand values or stemmed

Operand Ports
...

Figure 1: The Anatomy of a Node.

We examine the principle components of a node below in more detail. See Figure 1 for a graphical

representation of a node and the ports at which computational elements are attached.

§6 Operator Ports. ≪Description of the operator port and its role in the Condensed Graph model≫

The actual contents of a node’s operator port depend on the Condensed Graph model implementation, but

might for instance be a function pointer in C, aMethod object in Java, or a lambda expression in a functional

programming backed Condensed Graph implementation.

There is nothing particularly special about this port. Its contents are software artifacts just the same as the

contents of the operand or destination ports that will be described shortly. This observation highlights that

the output of node computations may be used as operators and not just as operands to subsequent nodes.

Although dynamic operators are not typically currently employed in Condensed Graph applications, they

represent a powerful computational technique. Dynamic operator generation share many parallels with the

expressive realisation of functions as first order objects in functional programming. There is current work

on the use of dynamic operator generation to produce datastructures natively in terms of graphs. These

datastructures inherit many benefits from the graph model.

§7 Operand Ports. ≪A discussion of the operand ports and their role in the Condensed Graph system≫

Each node has one or more operand ports, according to the arity of the node’s operator. Operand ports are the

attachment points for the input data of the computational triple represented by the node.

It is not entirely clear, nor does it really matter how a node acquires the correct number of operand ports

for its operator, especially in the dynamic setup. It can be imagined that the operand port configuration of a

node is dynamically updated when an operator arrives at the operator port.

Operand ports are zero origin integer indexed for legacy implementation reasons.

§8 Destination Ports. ≪A discussion of destination ports and their role in the Condensed Graph system≫

The final constituent part of a node is a single destination port. Destination ports contain references to the

operand ports of other nodes and indicate where the node computation results are sent.

4

1.1 What are Condensed Graphs?

As before, the contents of destination ports are also regular software artifacts of the implementation

system. Unlike the case of dynamic operators, dynamic destinations are likely of less utility to the end

programmer and as such, destinations are usually assumed tobe statically assigned.

Because of this assumed static assignation, it is tempting to view destination ports as providing an arc

to an operand port over which node computation results pass.This view is unfortunately supported by the

standard graphing notation that will be introduced below. Helpful as this picture appears, it is a deceptive

view of destination port operation. There are specific semantic actions, such as stemming and grafting, that

can be applied to destination ports but which simply do not have a consistent interpretation in terms of the

result value arc path view. It is a common error to misconstrue destination ports as simply one end of an arc

over which results travel.

A node possesses a single destination port. This is not to saythat nodes can only forward their compu-

tation results to a single other node. Rather the software contents of a destination port are of a Composite

[GHJV93, GHJV95] pattern type and can be used to refer to manydistinct graph locations. Note, however

that only a single destination location is required for a node to be fireable.

Thus far, single valued operations have been implicitly assumed. Whilst this is required by the current

graph model, there is some ongoing work to extend the model tosupport multiple valued operators. To

this end, multiple destination ports, one per output, are required together with more complicated node firing

criteria. Regular multiple output nodes are not be of concern herein.

Before leaving the topic of multiple destination nodes, it must be noted that there are certain such nodes

permitted in the basic model also. These nodes, called E nodes, are special purpose nodes that play a specific

role in memory allocation and in the condensation process. These are the only multiple destination nodes

permitted in the basic model.5

1.1.2 Graphs

Arcs in the Condensed Graph DAG computation representationare induced from the port contents of nodes

in the graph. A destination port is connected to an operand port with an arc if the operand port is one of the

destinations on the destination port. Operator and destination ports are also the endpoints for incident in arcs

that convey the node operator and destinations respectively. Static operators and destinations are represented

as primitive values on these arcs.

The graph topology thus constructed must be that of a DAG. Cyclicy is not permitted.

§9 E and X nodes. ≪Special purpose memory allocation and graph delimiting nodes≫

There are two special node types, denoted Enter(E) and Exit(X). The E node represents the graph computation

entry point and has as many operand ports as operands to the larger graph computation. For example, a graph

to sum two integers will have two toplevel operands, and so the corresponding E node also has two operands.

An E node has as many destination ports as it has operand ports. The operation of the statically assigned

operator is trivial, being a simple copy. On E node executed,each operand is copied from its operand port to

5

1.1 What are Condensed Graphs?

the destinations contained in the corresponding destination port of the E node. So the first operand is copied

to the destinations in the first destination port, the secondoperand to those in the second destination port, etc.

E nodes also have a memory management function in the machinesemantics. The triggering of an E

nodes is a cue for the execution machine to step into a new execution or stack frame. Furthermore, the E node

is also a marker node for the condensation process.

X nodes possess a single operand and a single destination port, together with a static operator. On execu-

tion, the X node copies the input operand to the output destinations. The idea is that this output constitutes

the output of the whole graph execution. So whereas the E noderepresents the graph entry point, the X node

represents its exit point.

In terms of machine semantics, the X node cues the machine to deallocate and clear the graph execution

or stack frame. It is also the concluding marker node for the condensation process.

§10 Example Condensed Graphs.≪Illustrative example Condensed Graphs and explanations≫

Consider the graph in Figure 2, which describes a computation with two inputs and a single output. This

graph functions to sum the two, presumably numeric,6 input parameters and pushes the summation value to

the output.

XPlusE
0

1

0 0

1

0

1

Figure 2: Example Condensed Graph.

Note that Figure 2 incorporates the convenient shorthand practice of writing static operator names inside

of nodes, rather than indicating passage via the operator port.

As before, caution is required when considering the arcs that connect destination ports to the operand ports

they contain. There is a strong misconception that output results pass over the destination port(commonly

incorrectly referred to as an “output port”) and along the arc to the endpoint operand port. The viewer must

always be aware that this interpretation obsfucates the real mechanisms of the destination port.

It will be seen shortly that destinations may be stripped from nodes by the stemming process. Although

there is a graphical notation for this process, it needs to beemphasised that the plain arc notation obscures

the node stemming facility. Misunderstanding the destination port semantics is a common error made by

newcomers to the Condensed Graph system. Unfortunately thestandard graph notation fails to highlight the

special status of the destination port.

It is instructive to consider the reduction of nodes in the example graph and the illustration of operand

dataflow in Figure 3. Suppose the E node operand ports are populated with the numeric valuesx andy at the

commencement of a graph execution. It is not of terrible concern for now how the toplevel actually populates

these inputs.

6

1.1 What are Condensed Graphs?

x+ yPlusE X

y

x
x

y

x+ y

Figure 3: Example Graph Datapath

Initially, only the E node contains a full complement of computational triple elements and is the only

node capable of firing. Note that the Plus node is incomplete because operands are missing. This is despite

what the diagram may suggest on casual inspection. Similarly, the X node is incomplete.

When the E node fires, its destinations are populated with the input operands. In particular, this means

that the Plus operand ports are populated, making the Plus node itself fireable. When the Plus node itself

fires, its destinations are populated withx+ y, making the X node complete. The firing of the X node pushes

x+ y onto the toplevel output.

This example illustrates a computation that is imperative in nature. This is a consequences of the linear

graph structure. The real value of Condensed Graphs comes about when there are multiple execution branches

possible at a given moment as in the case of Figure 4.

E

Plus

Plus X

Plus

Mult

Mult

21

1 2

Figure 4: Example Condensed Graph II.

Following the triggering of the E node in Figure 4, both of thePlus nodes are complete and ready to be

executed. Any order or form of parallel or serial execution scheduling can be employed to evaluate nodes that

are not strictly ordered in the computation DAG. Nodes represent independent computational triples, whereas

the graph determines the data dependencies present.

7

1.1 What are Condensed Graphs?

1.1.3 Stemming and Port Strictness

§11 Stemming. ≪Introduction of the Condensed Graph mechanism for influencing the character of a computation≫

Stemming is the design time process of temporarily removinga destination port’s contents so as to prevent the

node containing that port from firing. The destinations are not removed completely, the mechanism simply

prevents the node from firing until some later computation explicitly requires it to fire. The reverse operation,

that of replacing destinations, is called grafting.

Where before stemming, a destination port is occupied, afterstemming it helps to think that the operand

ports to which the destination port points have been occupied by a composite operand value. In this way,

although one node is stripped of its destination port element, other later nodes are populated with operand

port values.

Stemming facilitates lazy evaluation by automatic grafting. The grafting process can be triggered on a

stemmed node by the firing of nodes that depend on the result ofthat stemmed node. Stemming is also most

primarily used in conjunction with recursion and IfEl nodesas will be seen shortly.

0

2

Equals

Mult

E XIfEl

2

1

0

Figure 5: Example Stemmed Node.

Consider the example in Figure 5, the purpose of which is to double the input parameter. The graph first

performs a comparison and will then only compute the multiplication if the input parameter is nonzero. This

example is deliberately contrived in order to illustrate the stemming process.

The previously unseen operators function as follows. Equals compares two operands for equality, re-

turning an indicative Boolean result. The Mult operation multiplies the two operands. The IfEl operation7

achieves the basic branching in the Condensed Graph system.Operand zero is a Boolean indicating which

operand to use as output, operand one if true, operand two if false.

8

1.1 What are Condensed Graphs?

Aside from the new nodes, the main point of interest is the stemming of the Mult node to the IfEl node.

It is very common to stem IfEl branches in order to require their lazy evaluation. To all purposes here, even

when the E node is fired, the Mult node will remain incomplete.Thus, it is assured that the multiplication is

not done eagerly ahead of the equality test. During execution, the equality test is executed first, then the IfEl

triggered. Note that the IfEl node is completed once the Equals node has fired but that the Mult node is still

incomplete without its destination.

The IfEl node operation depends on whether the contents of the input selected operand port are primitive

or not. In the case that the contents are primitive, the valueis simply copied to the output destinations. If the

selected operand port contains a stemmed node, this stemmednode is “passed through” the IfEl node. That

is, the destinations of the stemmed operand node are rewritten to remove the IfEl node and replace it with the

destinations of the IfEl node. Furthermore these destinations must be arranged to have the operand node as a

stemmed operand. This ensures the stemmed node is properly redirected to the destinations of the IfEl node.

In practice, the implementation is not so involved. Since the stemming mechanism is implementation

dependent, it can be designed in such a way as to easily facilitate this scenario. For instance, the WebCom

system simply moves the referenced node to the operand portsof the destinations, in effect treating the

stemmed node as a primitive value8.

The style of processing used by the IfEl node tends to be atypical. In general, a node with a stemmed

operator usually coerces the triggering of the stemmed nodeto produce a primitive value. This coercion is

done automatically via the use of port strictness and coerced grafting.

The behavior of the IfEl operands on the non-Boolean operandports can be compared with the behaviour

of currying in functional programming. Although, the comparison is entirely superficial, the IfEl does per-

form a basic higher order function that does not require knowledge of the actual operand contents, and as

such does not require the explicit computation of these values.

§12 Port Strictness. ≪Port strictness tags are a method to automatically coerce lazy computations≫

Operand port strictness and the stemming process are closely linked. Operand ports may be either strict or

nonstrict, indicating whether primitive values are required on the port for the execution of the node operation.

Although strictness is associated with operand ports of thenode entity, the artifact really depends on the

operation not the node.

A strict port requires a primitive value. A nonstrict port can take a primitive value or a stemmed node. In

the IfEl node example, the Boolean test is a required primitive operand in order to decide which alternative

branch to use. Therefore this operand port of an IfEl node must be strict. The contents of the non-Boolean

operand ports need not be primitive. Since the IfEl operation specifically processes stemmed nodes, these

non-Boolean operand ports of an IfEl node should be nonstrict.

§13 Coerced Grafting. ≪Explanation of the use of port strictness to coerce grafting≫

Stemmed nodes on strict operand ports of otherwise fireable nodes must be grafted in order to permit firing.

This grafting returns the destination of the stemmed node and may cause it to become complete, or cause it

9

1.1 What are Condensed Graphs?

to coerce completion from its stemmed operands. The firing ofthis node then populates the original operand

port and facilitates the triggering thereof.

This coerced grafting is performed automatically by the execution machine as required. Essential grafting

involves grafts that are required in order to move the computation forward. There is also the possibility of

using discretionary grafting in lazy graphs to convert lazycomputations into eager computations and to

throttle computation. For example, if during an execution,the machine determines it can avail of additional

computation resources but that there are not enough fireablenodes to maintain useful throughput, then the

execution machine can discretionary graft stemmed nodes inorder to raise the amount of fireable nodes in

the graph. Since fireable nodes correspond directly to exploitable parallelism, discretionary grafting is a

parallelism throttle.

Stemming and grafting can be viewed as inverse operations that move a single entity between destination

ports and operand ports. At times, it is more beneficial to have this element on the destination port location in

order to push the computation forward aggressively. At other times, it is more useful for this entity to reside

on operand ports and to encourage little additional computation.

Plus Plus

1

E X

Figure 6: Example Stemmed Node II.

Consider the example graph in Figure 6 that adds two to the input by way of a stemmed Plus node chain.

The execution proceeds by firstly firing the E node and populating the input of the first Plus node.9 Due to

stemming, the first Plus node isnot complete. The only complete node remaining is the second Plus node.

But since both node operand ports of the Plus node are strict,the second Plus node will have to graft the first

Plus node in order to fire.

See Figure 7 for the graph arrangement at this point. The coerced graft will make the second Plus node

incomplete, but will complete the first Plus node and thus coerce its execution in a lazy fashion. The first

Plus node then fires and populates the second Plus node operand port. The computation is completed in a

straightforward fashion from this point.

10

1.1 What are Condensed Graphs?

x
Plus Plus

1

X

Figure 7: Partial Execution of Example Stemmed Node II.

1.1.4 Condensation

Condensation is the recursive technique of embedding graphs as nodes within other graphs. A graph is con-

verted to an operator and placed on the operator port of a new node. On triggering, this operation evaporates

into the condensed graph description as a graph and connectsthe operands and destinations of the node to the

new graph. This operator view of condensation and evaporation is strictly operational and does neglect some

semantic details that are not of concern here.10

§14 Condensation Example. ≪An example of the condensation and evaporation processes≫

Consider the example recursive graph in Figure 8 which implements recursive base two exponentiation. For

toplevel operandx, the graph returns 2x. The recursive computation is maintained in the condensed Pof2

node. On execution, this creates a new instance of the Figure8 graph in place. See Figure 9 for an illustration

of the unrolled computation.

Pof2

X

0

1

1

E Equals

Minus

IfEl

2

1

0

Mult

2

Figure 8: Example Recursive Graph.

11

1.2 What is WebCom?

-

2

1

0

E

0

1

1

1

IfEl

1

X
0

2

IfEl

1
0

2

Mult

MultPof2

=

-

=

E

2

X

Figure 9: Unrolled Example Recursive Graph.

§15 Memory Problems. ≪A note on the memory issues involved in condensation≫

Examination of Figure 9 raises the question of efficient memory allocation. Each time an E node is passed

a full new activation frame or execution frame is required. In deep condensation sequences there will be

an Condensed Graph version of recursion overhead. There is active work on deploying efficient iteration

schemes in the Condensed Graph implementations to alleviate the current difficulty in using Condensed

Graphs to do large scale iterative computation.

1.2 What is WebCom?

WebCom is the primary triple manager (TM) or execution machine for the Condensed Graph system. It is

currently in its second major development incarnation and is being prepared for open public release. As much

of this dissertation details various WebCom internals, only a brief introduction is outlined below. More in

depth discussions are saved for the appropriate later occasions.

§16 Condensed Graph Triple Managers. ≪The specification for execution machines in the Condensed Graph system≫

A triple manager is a machine for the processing of CondensedGraphs into instructions and their subse-

quent execution. This machine must maintain graph memory datastructures and identify executable nodes in

managed graphs. These executable nodes must be marshelled for computation, scheduled, executed and the

results thereof propagated.

The Condensed Graph system makes no demands of the scheduling or execution order save executions

must respect the graph topology. At any point a number of nodes may be fireable, but the triple manager has

complete discretion as to the node firing order.

12

1.2 What is WebCom?

In addition to basic node scheduling, triple managers may optionally implement features like the throttling

support as described by speculative grafting, the exchangeof messages and work with other triple managers,

additional security features, or any other features that a developer may find interesting or useful. There are a

number of existing triple manager implementations including development simulations, sequential program-

ming triple managers, PVM parallel triple managers and WebCom. There is also developed research on

hardware triple manager implementations.

§17 WebCom Module Core Architecture. ≪The main Condensed Graph execution machine≫

The module architecture of WebCom will be the focus of detailed consideration later, but a cursory exam-

ination of the basic modules here will help outline the majorfeatures of WebCom. The seven main core

modules in WebCom are the Backplane Module, the Connection Manager Module, the Engine Module, the

Fault Tolerance Module, the Scheduler Module, the Load Balancing Module and the Security Module. Each

of these is covered briefly in turn in the following paragraphs.

All WebCom modules are planted in a Backplane Module. This functions as the main bootstrap module

and is almost entirely managerial in purpose, its only othermain role being the internal routing of module

message communications. The Backplane Module is considered as a module for implementation convenience

rather than because it has inherent module status. Indeed, historically the Backplane was not a module.

WebCom is triple manager software that coordinates the parallel execution of Condensed Graphs. Collab-

orating WebCom instances communicate over regular networksocket interfaces via their Connection Man-

ager Modules. WebCom only loosely enforces network topology with a parent-child relationship and can be

used in a wide range of P2P and tree configurations.

The basic triple manager functions of WebCom are contained in the Engine Module. There have been

numerous Engine modules written to support WebCom and allowing the fundamental triple manager com-

mands and instruction sets to be extended. For example, there are Engine Modules to interface WebCom with

middleware solutions such as COM, DCOM, EJB and Corba. WebCom itself also operates a middleware

solution leveraging the named current middleware solutions.

WebCom maintains recoverability and tolerance in the face of network faults via the use of the Fault

Tolerance Module. This module journals work exchanges as part of WebCom computations in order to repair

lost communications.

The Scheduler and Load Balancing modules conspire with the Engine module to schedule nodes into

instructions and order them for execution. The Load Balancer has a role in arranging an even distribution of

work between collaborating WebCom machines.

The final essential module for a WebCom configuration is a Security Module. Security has been a built in

component of the WebCom system from the earliest stages. Theauthority of a WebCom machine to execute

a particular instruction or action is always vetted by the Security module. There is an extensive authentication

system. [FMQ04, QF04, FQM02, FQ02, FQO+04, QCF04, FQM+00]

13

Chapter Notes

1.2.1 Past and Future Trends

§18 Where from and where to. ≪The origins and future directions for the Condensed Graph/WebCom project≫

The Condensed Graph was originally introduced in the doctoral dissertation by J.P. Morrison[Mor96]. Devel-

opment of Condensed Graph and WebCom tools has been the source of numerous funded projects by Science

Foundation Ireland, Enterprise Ireland, and the National Development Plan of the Irish Government. Over

the course of these projects a large amount of research has been developed. [JPMP04, MKPa, MKPb, MKPc,

MKPd, MPK, MC, MP, MPC, Ken04, MOH] The main WebCom system is supported by other research such

as the Cyclone cycle harvesting system, the Anyware technologies and the security framework for WebCom.

In the short term, the next probable developments in the Condensed Graph model include loop unrolling,

iteration optimisations, multiple outputs, datastructures and nondeterministic path merge operations. Re-

garding the WebCom technology, it is under active development in preparation for public release. Current

development works includes node targeting, debugging support, and Grid information management.

Chapter Notes
1The Information Framework and the aspect based internal eventsystems are entirely new. The Module API develops some previous

work in the WebCom software but contains new elements, notably in the use philosophy of modules and in the extended examples.
2The automatic removal of unwanted speculative computations represents a marked difference between the Condensed Graph system

and some other workflow type systems. Clearing bad speculationis a problem that has plagued other workflow systems in the past.
3Comparing Condensed Graphs to the Object Oriented paradigm results in a weak analogy because the Condensed Graph model has

an intrinsic graphical representation of computations thatcan be viewed as a program. The parallel notation of executable UML in the

OO paradigm is a strictly weaker concept.
4The Condensed Graph model must of course incur some inevitable additional computational overhead versus traditional computation

methods. Although the extent of this overhead is not clearly understood at this point, based on profiling and benchmarking there are

some reasonable grounds for optimism in this regard.
5One advantage in incorporating multiple valued operators inthe basic model is that this would partly uniformise the treatment of E

nodes. In the multiple output operators context, E nodes do not require specific operation semantics as they do in the current model. E

nodes would still require special treatment as part of their memory and condensation process functions, though.
6The input operands in the example graph of Figure 2 need not necessarily be numeric. The input operands need just be compatible

with whatever operation is denoted by the Plus operation. Depending on the implementation of this operation, any input types may be

permitted. For instance, if Plus is implemented using the “+” operator in Java, then the inputs might possibly be String objects.
7It should be noted that IfEl nodes have a special status in theexecution machine mechanics. They are triple manager operations and

must always be executed by the local machine.
8The use of stemmed nodes in operations does involve some API considerations for the operation programmers however. To handle

the circumstances of stemming, the operation writers need to beprovided with an API to process stemmed nodes. As it stands, treating

the stemmed node as a primitive value unties a lot of difficulties at the IfEl node, but there are cases when a node writer will want to

treat a stemmed node operand in a nonprimitive way. In reality, the practice of writing node operations is does not require reference to

stemming in nearly all cases. Consequently, it has been possible to develop the rare cases involving stemming on a per case basis.
9Note that initially in Figure 6 the second Plus node is also fireable. Although it is semantically undesirable for a node to fire before

the E node of its graph, this may be a practical machine optimisation.
10Specifically, the H and V graph definitions of condensation are not of concern herein save to mention that the E and X nodes form

delimiting markers for the condensation tree.

14

2
Information Framework

The Information Framework is a new component of the WebCom system, designed to implement a

step in the production of a supported type system within the WebCom realisation of Condensed

Graphs. The information requirements in this typing application illustrate the value of general pur-

pose metainformation mechanisms within WebCom.

The prototype Information Framework is outlined below and comprises of a component augmentation

of the present system that may be extended to support other non-typing applications. Also discussed are

examples of metainformation objects, together with potential and realised applications of the information

system. Note that this framework is an enabling component, and its primary utility is in the realisation of a

strict separation between typing data and graph data representations within WebCom.

2.1 Meta Information Motivation

At present, there is a lack of both available runtime and before time documenting data for Condensed Graph

elements and WebCom modules. The Condensed Graph elements consist of the many software objects used

to represent Condensed Graphs within WebCom, namely nodes,ports, operands, operators, graphs, and so

forth. The WebCom system operates on these elements as mandated by Triple Manager specifications.

These objects have a solely execution orientation in that they are designed and optimised to enable Web-

Com to efficiently perform Triple Manager actions. Type checking is intended as a strictly optional operation

15

2.1 Meta Information Motivation

and as such should introduce only a limited execution overhead. The implementational transparency of the

meta object notations to the existing WebCom system is also akey requirement.

Efficiency and transparency concerns notwithstanding, it is furthermore essential that these software ar-

tifacts be able to educate other objects as to their attributes and capabilities. It is precisely this facility that

provides for the unification of distinct application areas within the WebCom system of software. For in-

stance, the exportation of typing information from the coreelements, upon which Triple Managers operate,

can have additional uses outside of the type checking system. In fact, the typing information is currently used

to provide a rudimentary documentation system in the style of JavaDoc. This documentation system could be

incorporated, in automated form, into other tools in the WebCom suite, a point that is further discussed with

reference to enduser development support later in this chapter.

The existence of a metadata resource within the WebCom runtime environment is also of use to future

developers. The intention being that the Information Framework will provide a basis for a more expanded

metadata system. The exact constituent data elements of this future system would depend on developing

requirements within WebCom research but the Information Framework will implement a structure allowing

for the straightforward adoption of new metadata streams and categories.

At present, new metadata requirements necessitate overhauling core WebCom software. The type check-

ing application will serve a wider design purpose if it provides a basis for future metadata augmentation and

minimises refactoring tasks. From a design perspective, the Information Framework facilitates a cleaner core

architecture, in that metadata notations may be used to achieve requirements which previously might have

been implemented in the core software, incurring unwelcomesoftware coupling.

In spirit, the Information Framework compares closely to JavaDoc annotations, although in practice it

is much closer aligned with the Java BeanInfo system. The framework is intended to function in a manner

akin to the JavaDoc support in the Java 1.5 release. This Java1.5 release includes an updated JavaDoc tool

incorporating many improvements trailed in the XDoclet project. For instance, developers can implement

their own JavaDoc tags or annotations and extract metadata from these custom annotations at runtime via the

use of a query API. Analogously, it is proposed here that graphs, nodes and other elements export available

metadata to other portions of the runtime environment via a simple query interface.

It is also conceivable that metadata items may be dynamic. For the purposes of type checking, static nota-

tions suffice, but in more general purpose system it might be advantageously to facilitate metadata mutation.

Such mutation might consist of attribute value mutation or of modifications to the metadata schema itself.

Attribute value mutation would be straightforward to implement, the main considerations being the mutation

mechanism API. Metadata schema mutation is more involved and does not feature in this prototype.1

From a pure object oriented perspective though, attribute value mutable metadata compromises data value

encapsulation. The mutable value metadata design encourages a distinction between graph objects used for

graph execution purposes and their descriptive peer counterparts. In the present WebCom implementation,

graphs and nodes are monolithic entities containing both active and passive portions. Picture this as core

graph execution objects, containing the active data items,2 around which are wrapped peer objects containing

16

2.2 Parallels with BeanInfo

passive and descriptive values. Mutable metadata would mean having active data items in the wrapper peer.

The proposed Information Framework will help in separatingthese passive and active concerns, but will

also have a wider design benefit in minimising class pollution. Despite a sometimes task oriented develop-

ment, the WebCom system design possesses a strong identifiable core set of classes. However, these core

elements are very vulnerable to feature creep, something which the Information Framework as outlined here

can help discourage. In addition to providing an alternative to core class extraneous functionality pollution,

refactoring efforts can leverage this metadata system to cleanse current core pollution. The use of notational

based constructs will also support superior design in future system augmentation.

As a final motivating remark, note that the actual prototype implementation incurs only a small cost. From

this perspective, even if the system is underutilised thereis still a neglible penalty in its incorporation.

2.2 Parallels with BeanInfo

While the design intentions of the Information Framework mirror those of the newer JavaDoc annotations,

the actual implementation differs somewhat. The Information Framework follows the implementation model

of the Java BeanInfo API, one of the APIs making up the JavaBean component object middleware system.

A JavaBean is a Java object written according to a certain predefined format, so enabling the automatic

discovery of object attributes and events sourced within that object. The BeanInfo framework provides sup-

port for this data to be otherwise specified and populated, through the use of aBeanInfo object. Given that

Java reflection capabilities can provide default marshelled BeanInfos, JavaBean developers themselves do

not typically use BeanInfos directly. Nevertheless, this option remains available. Whilst the automatically

generatedBeanInfos are usually sufficient for the demands of JavaBean applications, it is the handwritten

BeanInfos that provide the implementation model for the prototype WebCom Information Framework.

JavaBeans are associated withBeanInfos on a per class basis, a design mirrored in the Information

Framework by associating WebCom graph execution objects with anInfo object on a per class basis. This

minimises overhead in that instantiations of a particular graph element class can share a commonInfo object.

Further mirroring the JavaBean model, there is provision for automatic population of WebComInfo

object attributes via reflection. In fact, JavaBean marshelling cues and reflection schemes suited WebCom

Info object reflection so satisfactorily that they were borrowedwith minor modification. This lending allows

users of JavaBeans to immediately recognise correspondingconcepts in the WebComInfo system and to

leverage an existing view of the JavaBean system into an initial view of the WebCom Info system.

The two main reflection cues employed are a no-argument constructor for initial blankInfo population,

and attribute element reflection in the base class to providedescription data for theInfo class. Since graphs

elements do not currently source events in their operation models, there is no analogue for JavaBean events

in the WebComInfo system. Though, event dispatch capabilities may be desirable at some point. So, in the

absence of generated events, the WebComInfo system does not implement reflection cue constructs from

the JavaBean system that are solely event system related.

17

2.3 UML Outline

An important caveat on disregarding events within the Information Framework concerns module events.

An extension of the current WebCom module configuration system raises a use for module metadata3 and

consequently for moduleInfo objects. Modules are logically the source of interesting system events and

moduleInfo objects are thus candidates for event dispatch documentation within the Information Framework

structures. It should be noted that module event generationand dispatch is handled within an entirely separate

design philosophy and so may be omitted from consideration at this point. There is, though, valid design

rationale for using the WebCom Information system to managemodule event metadata.

In a further JavaBean analogy, the WebCom Information Framework might be used in conjunction with

BeanBox style containers. A BeanBox describes software that provides a visual environment in which to

manipulate JavaBeans. This visual Bean manipulation is used in conjunction with object serialisation to

preconstruct and deploy arrangements of JavaBeans which achieve particular software tasks. A similar sce-

nario exists within the context of WebCom entities and essentially outlines a possible Condensed Graph IDE

implementation.4 In this scenario, the enduser can create and mutate the data contents of node objects, set pa-

rameters, connect nodes, and perform other graph design activities. Upon completion of graph arrangement,

the graph designer can serialised the designed graph to a useful representation. For instance, the designer

might generate a representation in the common XML based Condensed Graphs description format and de-

ploy this representation for execution or for further use byother tools in the WebCom software suite.

2.3 UML Outline

With this motivation and general implementation sketch in mind, this section will detail a draft Information

Framework UML specification. It is anticipated that this specification will evolve to meet future criteria as

mentioned in the above section.

§19 Misleading Nominature. ≪A warning and lesson regarding the illchosenNodeInfo terminology≫

Before proceeding with a description of the software elements of the framework, there is an issue of confusing

terminology to address. The early versions of this framework were developed with a static node operator

viewpoint. When the fluidity of operator port contents is ignored, Condensed Graphs appear as a very node-

centric model. In reality, however, the key component of thesystem is actually the operator. This is very

much the case in regards to documentation notations, and is intuitive when it is considered that the only

significantly varying elements of the model are the operators. Node-centricity fails in any interpretation that

stresses the variable elements of the Condensed Graph model.5

Unfortunately, the framework was initially developed in the context of static operators, and so the node

object has undue priority in nominature over the operator object. This is most apparent in the nameNodeInfo,

referring to a principal meta information class. In fact, this object really describes the metadata of the operator

on the operator port of the node in question. In the static operator case, this coincides with the node itself.

But although this works fine within the static operator case,it fails seriously in the dynamic operator case.

18

2.3 UML Outline

It has proven difficult to change this unfortunate terminology with the benefitof hindsight. So, although

the existing terminology will be used herein, more appropriate nominature will also be highlighted.

§20 Core Information Framework UML. ≪UML outline of the core classes in the Information Framework≫

The central spine of the Information Framework is theInfo, NodeInfo andCondensedGraphInfo inheri-

tance hierarchy, diagrammed in Figure 10. A top-down description of these classes is the most illuminating.

<<Abstract, Immutable>>

Info
Base class of information objects.

+getName(): String const

Visual name for the information object.
+getDescription(): String const

Description of the information object.
+visit(inout visitor:InfoVisitor): void

Visit mechanism.

<<Abstract, Immutable>>

NodeInfo
Implementation contract for Node information objects.

+getNodeName(): String const

Alias for getClass().getString()
+getNumArguments(): int const

Number of operand ports for node.
+getArgType(in i:int): String const

Type string of the i-th operand port.
+getArgDescription(in i:int): String const

Description of the i-th operand port contents.
+getArgStrictness(in i:int): Strictness const

Strictness of the i-th operand port
+getNumOutputs(): int const

The number of operator outputs.
+getOutputType(in i:int): String const

Type String for the i-th output
+getOutputDescription(in i:int): String const

Description of the i-th operand output.
+getImage(): Image const

Optional associated Image object.
+visit(inout visitor:InfoVisitor): void

Implementation of superclass method.

<<Abstract, Immutable>>

CondensedGraphInfo
Implementation contract for Condensed Graph information objects.

+getGraphName(): String const

Visual name for the Condensed Graph object.
+getNodeName(): String const

Phony implemenation marker for condensation.
+visit(inout visitor:InfoVisitor): void

Refinement of superclass method.

Figure 10: UML Diagram of Core Information Framework Classes.

The Info class is the abstract base class of the structure, its purpose to act as the hierarchy root and

to provide the basic common interface expected of allInfo classes. Contentwise, it is a trivial data class

comprising two immutable metadata fields, namely a name and description of the object under consideration.

These fields are intended to contain display friendly cues for endusers, the name field being a short reference

tag for the entity, the description field a more elaborate tooltip type text.

19

2.3 UML Outline

At present, when endusers encounter graph elements in the current WebCom toolset, the tags used to

report contents and properties are not immediately helpful. The name and description fields inInfo classes

can be used to provide more quickly recognisable cues. Although, these entries are of use in error reporting,

this is not presumed to be the typical or only application.

The existence of a hierarchy base means functionality can also be required of allInfo objects, not just

attributes. In particular, support for the Visitor patternis mandated by thevisit method. This is the hook

method for return dispatch in the Visitor pattern implementation and is described in more detail below.

There are only twoInfo class extensions of importance. The first is theNodeInfo class, used to describe

metadata particular for an inplace operator. Note thatOperatorInfo would be more proper terminology

for this class. The second class isCondensedGraphInfo, used to describe metadata regarding a Condensed

Graph object. It is more accurate to say, however, that thisInfo is used to contain metadata for the condensed

operator that manages the condensation and evaporation process of the actual graph. That it is a peer for

condensed operator metadata, clarifies most precisely why it is a subclass of theNodeInfo class which

models operator metadata.6

ConsideringNodeInfo in more detail first, it is an abstract, immutable and primarily data oriented class,

similar to theInfo class in this regard. It is essentially not much more than a number of additional fields

augmenting theInfo class together with a relabelling. The additional metadataattributes are:

• A node name, the internal name for the operator, defaulting to a classname string.

• A field containing the number of operands. This is both the number of operand ports on a node con-

taining the operator and the arity of that operator.7

• An indexed attribute of operand typing data. Each operand has an associated type string describing

permitted datatypes. The interpretation of this string will be discussed in the chapter on type checking.

• An indexed attribute of operand user friendly descriptions.

• The number of operator outputs8.

• An indexed attribute of output type strings, one per output.

• An indexed attribute of output descriptions.

• An optional graphical image for potential user visualisation. For the Condensed Graph Infos this might

be an actual diagram of the expanded graph, for instance. This is blank by default.

Finally, theCondensedGraphInfo, which really refers to condensed operators, is a small further exten-

sion of NodeInfo with the addition of an attribute string graph name field for friendly graph references. It

also includes some node name field masking.

BothNodeInfo andCondensedGraphInfo extend thevisit method to correctly dispatch callback.

20

2.3 UML Outline

§21 Example Info. ≪Basic application of the Info classes and a trivialNodeInfo example.≫

The use of Information Framework classes by third party applications is intended to be by the implementation

of concreteInfo objects, describing operators and graphs. The main currentimplementations involve static

descriptions of operator data. An extremely typical suchNodeInfo example is included in Appendix A.

The programing is simple, the only interesting portions being the string constants. If anything, this example

illustrates how these classes are trivially amenable to automatic generation schemes.

The included example is aNodeInfo object for a basic addition operator. The attribute assignments

are what distinguishes thisNodeInfo from any other current example. The name assigned is “Addition

Node”, the node name is “webcom.nodes.core.AdditionNode”, the contents of the operand type strings,

both identical, are “OR(java.lang.Byte, java.lang.Short, java.lang.Integer, java.lang.Long,

java.lang.Float, java.lang.Double)”. The interpretation of these strings is covered in more detail

later, but this example indicates the conjunction of the primitive numeric Java types. This particular operator

or static node has a single output, the result of the summation of the two input operands permitted.

Implementing theseInfo interfaces need not involve static descriptions of operators and graphs, however.

It is possible to produce implementations backed by nonstatic data. For example, all available operators and

metadata items may be stored in a database and a concrete realization of theNodeInfo interface programmed

to acquire data dynamically from this database on request.

§22 Visitor and Factory UML. ≪Description of Visitor and Factory patterns in the Information Framework.≫

The Visitor and Factory patterns in the Information Framework complement the above described base data

classes from the perspectives of flexible application and construction respectively. Figure 11 illustrates the

UML outlines for the relevant classes.

<<Factory>>

InfoFactory

+getCondensedGraphInfo(in graph:CondensedGraph): CondensedGraphInfo

Produce Info for input CondensedGraph
+getNodeInfo(in node:Node): NodeInfo

Produce Info for input Node

<<Interface>>

InfoVisitor
Implementation contract for Info object visitors.

+visitCondensedGraphInfo(in graphinfo:CondensedGraphInfo): void

CondensedGraphInfo callback
+visitNodeInfo(nodeinfo:NodeInfo): void

NodeInfo callback
+visitOperandInfo(in operandinfo:OperandInfo): void

OperandInfo callback

<<Adaptor>>

InfoVisitorAdaptor
Convenience adaptor class

+visitCondensedGraphInfo(in graphinfo:CondensedGraphInfo): void

Blank CondensedGraphInfo callback
+visitNodeInfo(nodeinfo:NodeInfo): void

Blank NodeInfo callback
+visitOperandInfo(in operandinfo:OperandInfo): void

Blank OperandInfo callback

Figure 11: UML Diagram of Visitor and Factory Information Framework Classes.

21

2.4 (Potential) WebCom Applications of the Information Framework

The Information Framework Visitor pattern support, via themechanism of double dispatch hooks, has

already been encountered. TheInfoVisitor interface represents the other half of the dispatch pair and

forms the contract for visiting objects to implement in order to automatically traverse the visit tree via builtin

mechanisms. So, an application programmer wishing to process one or multipleInfo items, may specialise

theInfoVisitor interface or its convenience adaptor subclass to the desired end, and then invoke thevisit

methods of theInfo items to process, handing them the customisedInfoVisitor instance.

Centralising metadata processing code in a single visitor class, or in a tightly collaborating facet or Me-

diator, promotes good design in the applications that exploit this Visitor pattern. This can encourage sound

design in the internal WebCom programming base.

The next section includes example applications of the Information Framework. Of special note is the

documentation generation example, as it illustrates the canonical use of the Visitor pattern. The idea there is

to dump the available metadata in a typesettable form, very much like a dumb JavaDoc Doclet. The point of

interest is in the simple design of this application given the Visitor support.

The Factory pattern is likewise elementary, but similarly valuable. At present, there is a basic Factory

implementation in theInfoFactory class to support flexible construction. This interface can be presented

with a Condensed Graph or node at runtime and will return a rudimentaryInfo object for that element.

The present version makes a best guess at metaattribute contents using some internal WebCom reflection

capabilities. It is of particular design value to present a simpler interface to these internal functions, as they

are currently too low level for easy third party application.

In future, it may be useful to extend theInfoFactory class to support both persistent metadata and

dynamically backed metadata. So, the results of each query would be persistently stored and augmented with

other available information as it becomes available. One way of actually implementing this scheme is to use

a database maintenance module, and have it listen for WebComevents that may provide additional attribute

information. The discussion in the next chapter on event systems will clarify how this might operate. Also,

informing methods can be provided for third parties to educate the system about particularInfo objects if

this is convenient. And finally, this module can also interact with other information management modules

and exchange mutually interesting data.

2.4 (Potential) WebCom Applications of the Information Framework

The remainder of the chapter concerns some further motivation for the Information Framework, in the form

of potential and real applications thereof. Described below are a number of applications that highlight the

flexible nature of the system. Despite its lightweight design, the system plays a keystone role in higher level

WebCom plumbing software.

22

2.4 (Potential) WebCom Applications of the Information Framework

2.4.1 Documentation Provision

The first application involves the delivery of documentation aides and cues to developers of Condensed Graph

programs. Although, the Information Framework by its very nature can be exploited in many documentary

opportunities, the focus here will be on two particular instances. Since the framework disseminates valuable

information, these two examples fall short of exhausting the possibilities.

§23 IDE Runtime documentation provision. ≪Applications of the Framework within existing WebCom tools≫

The current WebCom software development suite of tools is centred on the Condensed Graph IDE. This

tool facilities the production of diagrammatic and XML Condensed Graphs representations. It also forms

a testbed harness for the execution of these Condensed Graphs. Note as an aside, that there are a range of

execution harnesses and the IDE forms just one option. The topic of an unified execution API is covered in

the Submission Framework application below.

Operationally, the IDE presents the user with a graph construction canvas upon which nodes with static

operators may be arranged and interconnected by means of pointer manipulations. Available operator/node

elements are presented in a palette for drag and drop selection. The IDE is an essential tool for experienced

graph developers, but is also a valuable means of introducing new users to the graph paradigm which can

otherwise be difficult to grasp. Many beginner difficulties are often resolved in the first IDE session.s are

often resolved in the first IDE session.

A deficiency in the IDE, and a current focus of development activity, is a lack of relevant documentation

cues in the software. Rather than help manual support, the Condensed Graph development philosophy de-

pends on the provision of pertinent details on the construction panel. Searching a help system is an awkward

solution and would impede graph design activity. The graph designer should be presented with sufficiently

detailed operator data immediately to hand, in order to facilitate design selections in constructing new graphs.

The Information Framework helps with this difficulty in two ways. The provision of easily consulted

printed documentation is discussed presently, but first runtime program help cues are examined.

Essentially, the Information Framework can be used to provide content in a tooltip style approach within

the IDE software application. Potentially useful and already usedInfo objects may be cached in the IDE9

and recalled to provide documentation details to designers. New Infos can be added to the cache as their

underlying peer entities are referenced in IDE graph constructions. This way, the IDE can present a book of

Info objects that is comprehensive in regard to the graph under construction.

Exactly how these Info objects are used to prompt graph designers is a careful user interface problem.

This usability is critical but does not practically affect the mechanism of delivering documentation via the

Information Framework. Cues may be presented as automatic,hidden, selectable, or otherwise.

The Information Framework is ideally suited to use as a documentation content system within the IDE.

In addition to UI improvements, the adoption of the Information Framework for content management also

has a the wider impact of expanding the body of availableInfo classes. Mandating the documentation of

23

2.4 (Potential) WebCom Applications of the Information Framework

operators viaInfo objects prior to acceptance in the IDE would mean that in addition to IDE documentation,

theseInfo objects would be available to other tools in the WebCom application suite.

The documentation provided by the Info system consists of more than just description attribute fields. If

anything, experience has shown that the type string attributes could possibly be the more valuable documen-

tation. Often an operator’s name is sufficient to describe its function, but will not provide enough information

regarding operand types. The Information Framework provides a mechanism for the description of such

available documentation and also for the future additionalof relevant data attributes.

§24 Printed documentation generation. ≪An example exploitation of the Visitor pattern.≫

Printed documentation notes on available operators serve as a useful desk reference during the graph design-

ing process. Furthermore, the automatic generation of suchdocumentation from availableInfo objects also

demonstrates the application of the Visitor pattern in the Information Framework.

Name Addition Node
Node Name webcom.nodes.core.AdditionNode
Description Add the operands.
Num Operands 2
Num Outputs 1

Operand 0 A summand
Type OR(java.lang.Byte, java.lang.Short, java.lang.Integer, java.lang.Long,

java.lang.Float, java.lang.Double)
Strictness STRICT

Operand 1 A summand
Type OR(java.lang.Byte, java.lang.Short, java.lang.Integer, java.lang.Long,

java.lang.Float, java.lang.Double)
Strictness STRICT

Output 0 Result of Addition
Type OR(java.lang.Byte, java.lang.Short, java.lang.Integer, java.lang.Long,

java.lang.Float, java.lang.Double)

Figure 12: Addition Node Documentation

The basic operation of the documentation generator is to tabulate the attribute entries of the available

operators. An example of produced results can be see in Figure 12. The generator is implemented as an

InfoVisitor extended to generate a LATEX listing of eachNodeInfo or CondensedGraphInfo it is applied

to. There is similarity between the documentation generator walking over available Info objects and the

operation of a Java Doclet descending available Java packages for source code. The production of LATEX

source is simply a typesetting convenience. The tool could easily be modified to also produce hypertext or an

XML formatted list of the Info documentation.

24

2.4 (Potential) WebCom Applications of the Information Framework

2.4.2 Type Checking

The original purpose of the Information Framework was to provide data useful in the graph type checking

process. That is, provide data content to establish the compatibility of operators occupying nodes. Although

the particulars of this type checking will be outlined later, they serve an illustration value in demonstrating

the Information Framework and as such, it is of use to trail the type checking description here.

The type checking data is carried in the type string fields ofNodeInfo andCondensedGraphInfo objects

and the compatibility of operators is determined by matching outputs to input type strings either before or

during a graph execution. The output type string of an operator needs to be contained within the input type

strings of the operators to which the initial operator result is propagated. Type strings contain a set based

notation for permitted type strings, so output types are contained within input types in set containment terms.

The process of type checking Condensed Graph DAGs involves some amount of processing and symbol

table type activity. The goal of the chapters leading up to a full description of the type checking system is

to outline software and design to facilitate the implementation of type checking within a general WebCom

mechanism. In particular, the module and event API supportsneed to be described before the type checking

implementation harness can be properly considered.

There are two aspects to the type checking operation. It can be run statically during the endphase of

the design or it can run dynamically at runtime. Although, the latter approach involves a computational

overhead, it may be appropriate for looser typed graphs. Another interesting consideration of dynamic type

checking in Condensed Graphs is in the case of dynamic operators. Specifically, the generation of operators

via Condensed Graphs and their latter application within the graph that constructed them, rather than dynamic

operators as in the condensation and evapouration process.Either way, the proposed system is designed to be

used either statically as a design aid or dynamical for flexibility.

The more indepth examination of the type checking problem ispostponed until Chapter 6.

2.4.3 Submission Framework

The final motivating example here is the WebCom Job Submission Framework API. This API uniformises

programmatic WebCom task submission mechanisms and presents a single API for WebCom invocations.

Presently, there are numerous methods for submitting work to WebCom, including direct WebCom com-

mandline invocations, constructing WebCom instances fromwithin Java, Web Services invocations, and via

the IDE interface. In particular, the Web Services and commandline invocation methods have programmatic

Java counterparts. The current commandline tools simply invoke Java applications to perform the submis-

sions. These and future invocation schemes are handled uniformly by the Submission Framework.

A uniform API approach to WebCom job submission allows different WebCom backend scenarios to be

varied independently of the invoking technology. This is ofparticular value to application developers who

wish to use WebCom as an implementation technology. These developers can program job submissions to

this new API and leave the choice of actual backing setup to the local site.

25

2.4 (Potential) WebCom Applications of the Information Framework

From this point of view, the Submission Framework supports the use of WebCom from within other

applications. Specifically, these applications themselves need not necessarily be programmed as Condensed

Graphs. So, a traditional programmer might implement the majority of an application in Java, for instance,

but leverage WebCom to handle portions of the program that highly suited to Condensed Graph solution.

§25 J2ME Origins. ≪Submission Framework origins in WebCom mobile phone software≫

The Submission Framework was developed as a result of demands arising from J2ME WebCom applications.

J2ME is the embedded systems Java edition supported on most recent mobile phones, handheld computers

and increasingly on other low end consumer electronics.

The J2ME WebCom application was designed to enable users to submit jobs to an Internet connected We-

bCom server. These jobs would be submitted by mobile devices, over WAP or GPRS networks, to machines

which would perform the specified WebCom tasks and return results to the original clients.

This connectivity makes possible a variety of novel WebCom applications. For instance, a scientist might

preprogram Grid submissions,10 so that she might run large computational trials remotely while onsite. Simi-

larly, mobile inventory could be conducted by mobile devices connecting to a server database. Business tasks

could be scheduled and managed via WebCom, etc.

Figure 13: J2ME Application.

Figures 13 and 14 contain screenshots from the prototype J2ME WebCom application. The left side of

Figure 13 illustrates a preprogrammed Factorial computation task. Users may either select preprogrammed

tasks or construct customised job specifications. The rightside of Figure 13 shows the machine selection

screen where users target operations to server machines. Users may also augment this target machine list.

The left of Figure 14 shows execution parameters for a Factorial task being entered. To submit a task,

users select a target machine and enter required parametersas per the job specification description for the

desired task. This job is then submitted via, in this case, a WAP connection11 to the target machine. This

machine performs the required WebCom computation locally and returns result data to the original client.

The right of Figure 14 shows this information being displayed.

26

2.4 (Potential) WebCom Applications of the Information Framework

Figure 14: J2ME Application Continued.

Being a simple prototype the initial J2ME application does not address key security concerns. In par-

ticular, a security mechanism supported by a J2ME security toolkit12 on the client side and by a full secure

HTTP server architecture is essential. This security wouldalso need to respect the internal WebCom security

manager semantics. Some intermediate security measures might include restricting permitted machine to job

pairings on both ends of the transaction, and requiring strong authentication by client machines.

The current application is limited to request type actions.In future, it is hoped that a fully connected

WebCom instance will be developed for the J2ME architecture. This would permit J2ME devices to be

leveraged into the networked WebCom topology. In particular, J2ME devices could be scheduled specific

work that requires the attention of the device owner. In thisway, workflow and scheduling aspects of WebCom

can be exploited to benefit the device owner, rather than in exploiting the limited machine cycles available on

a J2ME device for group computation.

The Submission Framework arise from the need to describe task descriptions both in the J2ME client and

in the WebCom Java servlet on the server end. This WebCom servlet can receive WebCom requests from

non-J2ME sources also, and might be used, for instance, as a web interface to Grid WebCom.

This servlet also raises the issue of uniformising programmatic access to WebCom invocation methods.

Application programmers might benefit from a single WebCom invocation API, and a variety of backend

WebCom invocation implementation schemes. So, for example, a program that embeds a direct WebCom

instance could be easily configured to depend on a servlet WebCom instead, without recompilation.

§26 Framework Organisation. ≪Sketch UML for Submission Framework and outline≫

The organisation of the Submission Framework inherits the Information Framework classes, and adds sub-

mission software for complete job tasks. A basic submissionjob representation is aCondensedGraphInfo

together with representations for graph operands and some management details.

Figure 15 depicts the representation for passing graph operand job parameters. Here, theOperandValue

class maintains a string representation of the desired operand and a mapping to theOperandInfo containing

the operand typing metadata. This class inherits fromInfo and participates in the Visitor pattern. A more

27

2.4 (Potential) WebCom Applications of the Information Framework

<<Immutable>>

OperandValue
Metadata for Operator parameter value.

-type: String

-value: String

+OperandValue(in theType:String,in theValue:String)

Constructor
+getType(): String const

Type String for value contents
+getValue(): String const

String representation of parameter value.

<<Abstract, Immutable>>

OperandInfo
Implementation contract for Operand information objects.

-description: String

-type: String

-strictness: Strictness

+OperandInfo(in theDescription:String,in theType:String,
 in theStrictness:Strictness)

Constructor
+getName(): String const

Phony implementation for superclass contract.
+getDescription(in i:int): String const

Description of the operand parameter
+getType(): String const

Type String for value contents
+getStrictness(): Strictness const

Strictness of the operand port
+visit(inout visitor:InfoVisitor): void

Implementation of superclass method.

<<Abstract>>

Info

Peer Metadata

Figure 15: UML Diagram of Submission Info Classes.

correct model would manage the operand data inCondensedGraphInfo using theseOperandInfo objects.

This would allow the coupling ofOperandValue objects to their peerOperandInfos and to the containing

CondensedGraphInfo. This would represent a more accurate view of the software relationships and tidy

some of the multiattributes of theCondensedGraphInfo class.

The role of OperandValue objects is to contain input graph operand values for the job graph to be

executed. Figure 16 illustrates the remaining job management classes. Here,Job is the final element of the job

description triple, containing transmission and result storage details. In particular, it stores the request time,

the result, and a universally unique13 job identifier, in additional to references to theCondensedGraphInfo

and associatedOperandValue objects.

The submission objects form a matching hierarchy for the submitter classes, in Figure fig:umlsubmitter

below. The parentJobSubmission contains the job submission data elements, namely its liveness and a list

of interested objects. A submission is different from a job in that job descriptions may be reused, particularly

in the scenario where a job is submitted to multiple WebCom backends which compete to turnaround the

result. For instance, the same job may be submitted to a localWebCom cluster and perhaps to a larger

national Grid for simultaneous execution. In this case, theidea is to try for quick turnaround on the cheap

local cluster resource whilst the job is queueing on the moreexpensive remote Grid.

The present framework includes two concreteJobSubmission class implementations, each requiring

custom submission code. These areBasicWebComJobSubmission for local direct WebCom invocations, and

ServletWebComJobSubmission, containing a protocol servlet address field, for servlet WebCom operation.

Both realisations have peers in the submitter hierarchy in Figure 18.

Submission objects arrange the transmission of data to and from WebCom backends, and so warrant asyn-

chronous thread implementation. These threads are managedby submitter elements, introduced presently.

28

2.4 (Potential) WebCom Applications of the Information Framework

Job
Data management for Job submissions.

-requestTime: Date

Job instance submission time.
-info: CondensedGraphInfo

The CondensedGraph to execute.
-arguments: OperandValue[]

-result: String

-uid: UUID

Universal Unique ID.

+Job(in theGraphInfo:CondensedGraphInfo,
 in theArguments:OperandValue[])

Constructor
+getNextUID(): UUID

Returns next UUID value.
+getRequestTime(): Date const

+setRequestTime(in theTime:Date): void

+getName(): String const

Screen name of Job from Info.
+getGraphName(): String const

Graph name from Info.
+getNumArguments(in i:int): int

Required number of operands.
+getArgument(): OperandValue const

Get i-th operand
+getArgDescription(in i:int): String const

Get i-th operand description
+getUID(): UUID const

+setResult(in theResult:String): void

Set the result of this job. Internal use.
+getResult(): String const

+getGraphInfo(): CondensedGraphInfo const

Thread

<<Abstract>>

JobSubmission
Template class for Job submission varients.

-live: Boolean

Liveness indicator.
-listeners: Vector

Event listeners.

+JobSubmission(theJob:Job)

Constructor
+run(): void

Job Submission loop.
+cancelJobSubmission(): void

Terminate submission.
+killThread(): void

Kill submission thread.
+transmitJob(): String

Perform the job submission.
+isLive(): boolean const

+getJob(): Job const

+addListener(in listener:JobSubmissionListener): void

Append a new listener.
+dispatchEvent(inout event:JobSubmissionEvent): void

Send an event to listeners.
+removeListener(in listener:JobSubmissionListener): void

Manages submission of 11

BasicWebComJobSubmission
Job submission for direct WebCom.

+transmitJob(): String

Transmission implementation
+receiveResult(in theResult:Result): void

WebCom Resultee Interface

<<Interface>>

Resultee
WebCom Interface for Result sinks.

+receiveResult(in theResult:Result): void

ServletWebComJobSubmission
Job submission for WebCom J2ME servlet.

-targetMachine: String

Protocol address of target servlet

+ServletWebcomJobSubmission(inout theJob:Job,
 in theTargetMachine:String)

Constructor
+transmitJob(): String

Figure 16: UML Diagram of Job Submission Classes.

TheJobSubmission threads raise events at the start, completion and cancellation of submissions under

event model described by Figure 17. This is a traditional event model whereJobSubmission forms the event

source and implementations ofJobSubmissionListener interface sink theJobSubmissionEvent events.

Listener registration is done by theJobSubmission class.

The main useful application of the event structure, other than by third party code interested in job submis-

sion progression, is by the submitter classes shown in Figure 18. TheJobSubmitter class provides a hook

for third parties to invoke submissions and to process the results obtained. Once aJobSubmission object

has been acquired, it can be actively submitted via thesubmitJob method of the relevantJobSubmitter

object. ThisJobSubmitter starts the job and provides callback adaptor hooks for the start, finish and cancel

events. In this sense,JobSubmitter is simply an adaptor for theJobSubmissionListener interface, albeit

one with useful methods supporting third party participation in the submission process.

BasicJobSubmitter is a trivial concreteJobSubmitter implementation. This class forwards basic text

representations of the submitted job, output and cancellation details, to theJobSubmitter’s Console object.

29

2.4 (Potential) WebCom Applications of the Information Framework

Thread

<<Abstract>>

JobSubmission
Template class for Job submission varients.

<<Interface>>

JobSubmissionListener

+handleJobSubmissionEvent(event:JobSubmissionEvent): void

Listens to1

JobSubmissionEvent

+SUBMISSION_COMPLETE_EVENT: int = 1

Enumerated Type Constant
+SUBMISSION_STARTED_EVENT: int = 2

+SUBMISSION_CANCELLED_EVENT: int = 3

-type: int

State of job submission in event
-job: JobSubmission

The Job this event occurs on

+JobSubmissionEvent(in theType:int,in theJob:JobSubmission)

Constructor
+createStartedEvent(in theJob:JobSubmission): JobSubmissionEvent

Generate a start event
+createCompletedEvent(in theJob:JobSubmission): JobSubmissionEvent

Generate a completion event
+createCancelledEvent(in theJob:JobSubmission): JobSubmissionEvent

Generate a cancellation event
+isJobSubmissionCompleteEvent(): boolean const

+isJobSubmissionStartEvent(): boolean const

+isJobSubmissionCancelEvent(): boolean const

+getJob(): JobSubmission const

services

1

n

generates n

Figure 17: UML Diagram of Job Submission Events Model.

A trivial commandline job submission tool would simply thendump the contents of thisConsole.

It helps to reconsider at this point, how a WebCom backend might be added to an existing applica-

tion. Suppose an application designer has isolated programelements which have an elegant graph repre-

sentation. The designer constructs suitable graphs and prepares job specifications for them in the form of

CondensedGraphInfo objects. Thereafter, aJobSubmission object is created by constructing the required

Job object and coupling theCondensedGraphInfo object to the instance operands. The designer finally

selects the means of execution by instantiating aJobSubmission. In practice, the selection of concrete im-

plementation is done with a factory class, leaving the designer’s application WebCom backend independent.

For the designer’s purpose, it may be necessary to implementa customJobSubmitter to format the result

strings into exactly the desired form for reimportation into the original application. To invoke WebCom the

designer simply constructs the desired instance ofJobSubmitter and uses this to fire the execution of a

concreteJobSubmission via the particular means described therein. This will causethe desired graph to be

executed and the designer can recover the results from the customJobSubmitter extension.

§27 LaunchGUI. ≪Graphical tool for the submission of Condensed Graphs≫

LaunchGUI is a graphical application for the selection and submission of Condensed Graphs to WebCom

backends, implemented with the approached outlined just above. It applies the Submission Framework as

proposed and provides basic reporting to populate the display of a graphical console.

30

2.4 (Potential) WebCom Applications of the Information Framework

<<Abstract>>

JobSubmission
Template class for Job submission varients.

<<Abstract>>

JobSubmitter
Job Submission Manager

-pendingJobs: sets

Unreturned submissions.
-results: Set

Competed jobs.

+getConsole(): Console const

+setConsole(theConsole:Console): void

+jobStarted(theJob:JobSubmission): void

Abstract interface method.
+jobCancelled(theJob:JobSubmission): void

+jobCompleted(theJob:JobSubmission): void

+handleJobSubmissionEvent(event:JobSubmissionEvent): void

Handle job events.
+submitJob(theJob:JobSubmission): void

Submit indicated job for execution.
+clearPendingJobs(): void

Disregard current jobs.
+getPendingJobs(): JobSubmission[] const

+clearResults(): void

Drop current results
+getResults(): JobSubmission[] const

Return current results

<<Interface>>

JobSubmissionListener

+handleJobSubmissionEvent(event:JobSubmissionEvent): void

Listens to

JobSubmissionEvent
services generates

Console
GUI Result Data Display

+append(str:String): boolean

Append display text

javax.swing.text.DefaultStyledDocument

BasicJobSubmitter
Standard Console Based Job Manager

+BasicJobSubmitter(in theConsole:Console): void

Constructor
+jobStarted(theJob:JobSubmission): void

Concrete Implementation
+jobCancelled(theJob:JobSubmission): void

Concrete Implementation
+jobCompleted(theJob:JobSubmission): void

Concrete Implementation

Figure 18: UML Diagram of Job Submitter.

The LaunchGUI tool provides convenient graphical WebCom invocation and is particularly suited to new

WebCom users. Jar libraries may be loaded and unloaded to dynamically change the available task descrip-

tions and backing classes. Once desired libraries are loaded, the user are shown the display in Figure 19. The

top half of the window diagrams the available task descriptions, automatically extracted from the available

libraries by identifying and instantiatingCondensedGraphInfo classes. The bottom half of the window

displays the information provided in the selectedCondensedGraphInfo. In this case, theFactorial con-

densed graph object is selected and relevant details are displayed from theFactorialGraphInfo class.

Once a desired job description is selected, the user may advance the submission process by pressing the

“Set Arguments and Execute” button. Doing so presents the display in Figure 20. Here, required operands can

be configured. The displayed descriptions and typing data are taken from the relevantCondensedGraphInfo.

The user may customise the operands by modifying the “Value”fields. When the user has finished setting

parameters, the actual task submission may be accessed via the “Execute” tab.

Selecting the “Execute” tab yields the view in Figure 21 where available submission procedures may

be selected via the “Submission Type” widget. Like job descriptions, these submission methods are also

automatically read from the available libraries by identifying concrete instances ofJobSubmitter.

Upon submission method selection, a configuration panel is displayed in the available space. In Figure 21,

31

2.4 (Potential) WebCom Applications of the Information Framework

Figure 19: LaunchGUICondensedGraphInfo Selection.

Figure 20: LaunchGUI Operand Configuration.

32

2.4 (Potential) WebCom Applications of the Information Framework

Figure 21: LaunchGUI Submission Dialogue.

a servlet submission is selected and the user is being queried for the servlet protocol address. When the

submission process has been configured, the user may performthe submission by selecting “Submit.”.

Upon submission, the requestedJobSubmitter is constructed and the associated configuration panel

displayed. TheJobSubmitter knows which version ofJobSubmission is required, meaning that concrete

JobSubmission versions can be constructed blind to the LaunchGUI tool by the pluggableJobSubmitter.

With theJobSubmitter andJobSubmission in place, there is remaining work. The submitter is informed

of the correctConsole, namely the text box at the bottom of Figure 21, and then invoked. In the case of the

LaunchGUI there is nothing further to do and the output will appear in theConsole text box display. More

sophisticated applications might augment theConsole or JobSubmitter to recover specific result data.

Aside from illustrating the user application of the Submission Framework, this tool has a role in the We-

bCom application suite as the present WebCom tools lack a friendly graphical tool solely for the submission

of WebCom tasks. Previously, either a commandline tool was used or the task was first loaded into the IDE

application. The former is not suitable for new or nontechnical users, and the latter is too detailed for simple

WebCom trials. In any case, the IDE is part of the software development kit that is not required in a runtime

environment. The LaunchGUI tool is more than sufficient for enduser invocations.

The LaunchGUI and IDE may be combine in future to uniformise submission mechanisms. While the

IDE does include a separate task invoker, this employs neither the Submission nor Information Frameworks.

Also, the LaunchGUI tool may be written in the notation of theModule API, that will be discussed in

Chapter 4, and incorporated into the system tray toolset described there. This is an always on version of

33

Chapter Notes

WebCom with potential to be leveraged as a system level application, and is the focus of more in-depth dis-

cussion later. The tray tool makes WebCom available to all applications and would be nicely complemented

by a LaunchGUI feature. Such an addon is easily implemented with the Module API.

But before considering the Module API, it is first necessary to examine the aspect based eventing system

that has been added to WebCom. This is the topic of the next chapter.

Chapter Notes
1Metadata schema mutation requires some way of informing clientsof the current schema. This support is not required for type

checking and is perhaps not required for the vast majority of other applications also. As such, the implementation of metadata schema

mutation is a low priority item. In terms of module data schemata, there are some concerns, relating to informing clients of module

functionality, that are considered briefly in the chapter onmodules and form some overlap with metadata schemata mutation.
2And likely containing certain passive data items neither required nor desired in the metadata schema.
3This WebCom module configuration and other module oriented developments will be considered in a later chapter. But briefly, the

new module configuration supports the automatic loading of third party modules and is intended to provide opportunities formodule

writers to advertise functionality. Both these design goals benefit from the use of metadata.
4Note that a Condensed Graph IDE is already in use, following adifferent design. Nevertheless, a BeanBox approach to graph design

might be of benefit, either in future versions of the existing IDE tool, or in a separate lightweight graph designer.
5This is not to say that nodes are not the fundamental structurein the Condensed Graph model. They are, but they are not central in

the operational implementation to the same degree as they are inthe specification. From the enduser view, it is operators that are central.
6The alternative view would be to say that Condensed Graphs are instances of Nodes. This is true but doesn’t help explain why the

metadata requirements of a Condensed Graph are similar to thoseof an operator.
7This is a small but precise distinction. The number of operand ports on a node will change if a different operator is placed on the

operator port. The number of node operands can change dynamically to match the graph construction. Operator arities are fixed.
8Presently, this must be one as multiple output operators are not currently permitted.
9The actual management ofInfo objects is ideally suited to a module formalisation as noted earlier.

10The WebCom technology supports integration with Grid computing.
11Any network connection technology could be used for this connection, e.g., WAP, GPRS, Bluetooth, WiFi, etc.
12Such as that provided by the Bouncy Castle project.
13Via the UUID Internet specification.

34

3
Aspects and the Event API

A major development in the WebCom design over the course of this dissertation has been the adop-

tion of Aspect Oriented Programming (AOP). Whilst WebCom remains predominantly OO in na-

ture, significant elements of AOP design have been introduced, especially in the guise of the Event

API. The direction of this chapter is to explain aspects and what aspect design brings to WebCom.

Particular effort is spent on the Event API, as this provides a great exampleof incorporating the benefits

of aspects whilst retaining an illusion of OO implementation. Moreover, the Event API is a cornerstone of

the revised module structure and a key component in the implementation of type checking support.

3.1 Introduction to Aspects

Aspect oriented programming is a paradigm which has recently acquired much publicity. Although, aspects

have emerged as a recent phenomenon, they have roots in olderXerox PARC research projects. With the

development of better support tools for AOP, and with more and more developers being introduced to aspect

techniques, it is only a matter of time before aspects will beseen in most OO projects.

§28 Aspects and Object Oriented Design.≪A comparison and consideration of aspects and OO design philosophies≫

Aspect oriented programming does not seek to replace OO programming. In fact, aspects complement OO

design, just as OO design complements imperative programming. Aspects address a difficult OO design

35

3.1 Introduction to Aspects

problem and implement a pattern to limit the undesirable consequences of this problem. What differentiates

OO programming from imperative programming is design philosophy more than any actual implementation

programming language. This holds true for aspect oriented programming also. Although aspect design occurs

intrinsically coupled with OO design, it requires a radicalchange in view.

OO design is not limited to imperative base languages and OO principles can be applied in a range of

different settings, logic programming, functional programming, etc. And although this argument may be

made of AOP also, it is somewhat true that aspect oriented design is counterproductive outside of imperative

and OO contexts. The problem with using aspects within declarative programming is that, in some senses,

aspects are a disguised goto statement. Aspects do provide an ability to abuse program control flow and, as

such, are at odds with a declarative approach. However, aspects involve a highly structured approach and so

can be forgiven most of the goto statement comparison. In truth, aspects are really less questionable than OO

stables like exception handling support.

Aspects provide the facility to augment existing programming code at particular definable points. Devel-

opers can use this to indicate generic code to perform at eachinstance of a particular circumstance within

a program, and the mechanism whereby this is achieved is the single main advance provided by AOP. With

disciplined programming and a framework for generating events, an AOP style of programming could be im-

plemented without the use of aspect constructs. By implementing this “little eventing policy” pattern, aspects

contribute enormously to the successful negotiation of crosscutting concerns in program design.

The aspect approach is a valuable development in OO design. In fact, AOP and OOP are very critically

interdependent. OOP depends on aspects to solve a difficult recurring design problem, whereas aspects

depend on OOP for their proper context.

§29 Aspects within WebCom. ≪The adoption of AOP possibilities within the WebCom software suite.≫

Support for the AOP paradigm has been introduced to the WebCom suite as part of this dissertation. In-

troduced AOP even makes possible an event based programmingmethodology within WebCom. Later, it

will be seen that logic programming methodologies are also available, though not AOP dependent. These

programming techniques are transparent to developers who do not explicitly wish to apply them.

The introduction of aspects to WebCom was done using the AspectJ system, a Java AOP implementa-

tion. AspectJ adds additional notation to the Java specification and compiles aspect source code into binary

compatible Java bytecode.1 The AspectJ compiler also compiles Java code that does not exploit aspects, so a

change of compiler is the only change that developers ignorant of aspects notice. In the context of automated

WebCom builds, this change is difficult to spot. This just illustrates how easy it is to adopt aspect support

within an existing project, and how this adoption can be donewithout any consequences in the existing code.

Aspect documentation herein will be presented with AspectJnotation and terminology. The basic con-

cepts are common to AOP implementations, and casting them inAspectJ terms should not cause difficulty.

It is important to point at the results of changing to the AspectJ compiler. Essentially, without noticeable

cost, the WebCom system can provide the Event API abstraction described below. This is a mechanism for

36

3.1 Introduction to Aspects

providing core WebCom event data without requiring modification to these internals. The Event API also

provides a model for implementing event systems within the WebCom core or in module development.

The basic facility to program using aspects in the WebCom suite is also important. The possibility to apply

aspect design solutions within WebCom tools is a valuable aide. With careful application during refactoring

and extension, AOP provides an opportunity to further tidy the WebCom design.

3.1.1 Crosscutting Concerns

In short, aspects handle crosscutting concerns, providinga formalism, namely that of the aspect, in which

crosscutting concepts may be modularised and reused. The introduction of this aspect device promotes good

design in addressing crosscutting concerns, but can also beused as an effective program implementation

device. Most importantly, aspects introduce additional OOdesign possibilities and augment basic OO in a

manner akin to that of patterns. Aspects may be considered asa very important pattern, but ignoring the

software developed around aspects and describing AOP as theapplication of a single pattern is inaccurate.

The problem AOP addresses is crosscutting concerns, elements of an OO design which are scattered over

a number of design units. A crosscutting concern is a design element that affects or is implemented by a

number of classes. From a design perspective, this is highlyundesirable in that it promotes high coupling and

low reusability. Well designed OO applications try to minimise such coupling.

Crosscutting is a very serious problem and inhibits reusability aspirations of OO design more than perhaps

any other design problem. Often, the particular crosscutting problem is inherently multiclass and does not

present a noncrosscutting implementation. Such unavoidable crosscutting is difficult to implement, requiring

consistent ad hoc programming in a range of different classes. Moreover, the implementation of schemes

to manage crosscutting tend to be oneshot, if even attempted. Crosscutting is often just tolerated. But in

either case, the reusability of the affected components is torpedoed. Worst still, crosscutting concerns are

encountered time and again by OO designers, and occupy disproportionate amounts of programming effort.

Some motivating examples may help clarify this discussion and, unfortunately, there are more than

enough classic crosscutting examples to choose from. For instance, consider the problem of adding secu-

rity checks to an existing system.2 Credentials need to be verified at points where elevated privileges are

required. However, these points are often scattered throughout the software implementation, since it is im-

probable that privilege elevation points might have been centralised during the original implementation. And

even if such foresight was employed, it is unlikely that all privilege elevation points were successfully and

consistently captured. Essentially, the adoption of a security mechanism using traditional design would re-

quire a demanding refactoring effort touching on all elements affected in the security crosscutting concern.

Such time intensive reimplementation is a defining crosscutting concern characteristic.

Highlighting the crosscutting problem is not sufficient, AOP must also provide an effective solution.

This solution is to aggregate definitions of the points wherecrosscutting intersect base code, and to provide

programming code, or advice, to be performed at these points. This aggregation is the aspect element.

37

3.1 Introduction to Aspects

In the case of the security crosscutting concern, AOP provides a design solution by allowing all the priv-

ilege elevation points to be conveniently referenced within a security aspect. Each time a privilege elevation

points is encountered, the aspect system provides an opportunity for the security aspect to execute some code.

In this case, code to verify the user is authorised to elevateprivilege.

This is a solution because it centralises the authorisationcode, dislocating it from the privilege elevation

points in the code base. Introducing this code at every privilege elevation point is programmer intensive,

whereas isolating the points and describing the authorisation check once is far more productive. Furthermore,

the original code containing the privilege elevation points is ignorant of the security aspect and thus freed of

the crosscutting concern problem as manifested in the security requirement. The original code may be reused

with or without reference to security, which if required canbe reapplied via the aspect.

Security is not the only domain that lends itself to good aspect expression. Other recognised application

areas for AOP include caching, logging, profiling, and debugging. A caching design is described below.

AOP facilitates the avoidance of crosscutting by modularised design which would otherwise pollute the

overall OO design. In this way, AOP improves reusability giving rise to better OO design. But AOP is not

effective in solving the crosscutting problem entirely. A lot of crosscutting concerns present easy aspect

solutions, but this is not the case for all such concerns. Some may require convoluted and counterproductive

AOP solutions. In a sense, it is a question of design application. AOP offers a design tool, effective in a large

number of cases and consequently it is certainly valuable. But AOP is not a magic bullet for OO design.

There are other disadvantages in the application of AOP concepts and methodologies. One of which,

is a reluctance on the part of developers to adopt the new technology. This problem is faced by any new

paradigm and is only overcome with time and good developmenttools. This mirrors the transition from

imperative programming practices to OO practices, although the change is not so revolutionary in the case

of AOP. Much of the problem stems from lack of experience withAOP, which manifests itself in sometimes

poor initial AOP design efforts. This is a discouragement for developers new to aspects.

Perhaps the biggest problem with AOP is the nonlinearity of aspect programs and the consequent debug-

ging difficulties. This is a serious problem and the subject of much development activity. The emergence of

mature visualisation tools for AOP is anticipated to help alleviate this problem. However, in the meantime,

the initial obstacles in pursuing AOP are sometimes difficult to overcome.

3.1.2 Join points, Pointcuts and Advice

Describing the applications and mechanisms of AOP within WebCom will require some technical discussion

of the aspect model presented in AspectJ. The detail outlined in this section will be used to present two classic

aspect application implementations before moving on to consider specific WebCom aspect usage. These two

case studies present aspect software elements that have already been trialled in the WebCom system.

The first piece of aspect jargon here is “join point”. A join point is an identifiable point in a control flow

execution, such as a method call, assignment, conditional statement, for-loop initialisation, thrown exception,

38

3.1 Introduction to Aspects

or so forth. Perhaps the best characterisation of an AOP system are the join points permitted, describing how

the system tradeoffs detailed join point reference against the encouragement of efficient, practical design.

AspectJ supports join points for method(or constructor) invocation and execution,3 instance variable ac-

cess and mutation, exception catch blocks, together with various class and object initialisation points that

are of lesser interest here. It helps to think of AspectJ providing join point granularity at about the level of

method access. That is, submethod level detail is difficult or impossible to capture in AspectJ, and counter-

productive to attempt. Instance variable access and mutation are an exception to this view, but such operations

deserved dedicated methods anyway. The other discrepancy,that of exception catch blocks, is an application

of sufficiently utility to warrant relaxing the method level view.

A pointcut is a set of join points. AOP systems typically provide programmers with wildcards, predicates

and other means by which to flexibly select sets of join pointsto form pointcuts. AOP depends on convenient

aggregation of join points into pointcuts, specifying of code to execute when control occupies these pointcuts.

AspectJ provides a range of support for pointcut specification, including the specification of join point

elements in Java dotted notation with unrestricted, letter, subclass and interface wildcards. AspectJ allows

Boolean operators to be used on pointcuts to conjoin, disjoin, or negate sets of join points. Join points may

be referenced by sort, e.g., instance variable access and mutation, method and constructor invocation and

execution, and the various initialisation sorts. Pointcuts can restrict join points based on method arguments

or target objects, based on position in a call tree or on syntactic class scopes, or based on user defined Boolean

criteria referencing any available Java methods or variables.

Precision in pointcut specification is the black art of AOP. It is essential to describe pointcuts with suf-

ficient detail to discriminate the join points of interest, yet robustness is equally desirable and extremely

detailed pointcuts risk being made redundant on small base code changes. For instance, a pointcut explicitly

referring to a specific class method may fail if that method ispromoted into a superclass.

Advice is the term used for code executed at pointcuts. Particular advice is associated with a given

pointcut, and is executed based on the nature of this association whenever the conditions of the pointcut are

satisfied. Advice can be arranged at pointcuts in a number of ways. It may be executed before the pointcut

is realised, after it is finished, or if it finishes with a particular result or error. Advice can also be specified

around a pointcut, including code to execute before and after the pointcut. Advice may even refuse a pointcut

execution, provided that any necessary return types are supplemented.

Additionally, advice may be used to inject new class and instance members into an object, so an object’s

interface can change dynamically to fit circumstances during an execution. For instance, if a certain pointcut

demands a particular interface from an object of interest, the advice may augment that object with such an

interface implementation if one is not already possessed. In this sense, advice can “decorate” existing code

and permits a sneaky, encapsulation violating implementation of the Decorator pattern itself.

Note that pointcuts and their constituent join points are the only place where advice can be used to insert

or modify behaviour. This explains why the exposed pointcuts determine the character of an AOP system.

39

3.1 Introduction to Aspects

Provision of advice at unsupported join points require abusing supported join points to coincide with the

desired join point, and is deeply counterproductive.

An advice-pointcut pairing will typically address a singlefacet of a wider problem. Groupings of advice

and pointcuts forming a cohesive construct may be combined in an aspect. So, for instance, in the earlier

security application example, the pointcut specifying privilege elevation points and the authorisation advice

code may be grouped into a security aspect.

Aspects look very much like classes within AspectJ, but there are some aspect specific constructs, like

advice and pointcuts, which are not available in regular Java classes. Otherwise, classes and aspects share

many elements. Aspects may include variables and methods, both instance and static.4 Like classes, aspects

may form part of polymorphic and dynamically bound hierarchies, where both the abstract and extends

keyword behave much as they do for classes. Aspects may implement interfaces and stand in for these

interfaces type. And finally, for now, aspects may also be nested in the manner of inner classes and interfaces.

The runtime operation of AspectJ is best explained by considering how control flow operates in the

neighbourhood of an active pointcut. Assume that control inthe region preceding a pointcut, is as it would

in the nonaspect scenario. The type of the pointcut advice determines how it is triggered. So, for instance,

before advice is triggered immediately before the pointcut execution, as isaround advice, whereasafter

advice is triggered immediately after the pointcut execution. In the case of where multiple applicable advices

are possible, the AspectJ runtime determines precedence and applies the alternatives in order.

On encountering a pointcut trigger, metaobjects are prepared to provide the advice with access to infor-

mation regarding the trigger join point, such as its location in the control flow, its application target and so

forth. The control flow is passed with this metadata to the relevant advice. Once the advice has concluded,

control is returned to just after the trigger join point. An exception applies in the case of around advice, where

control is returned just after the original method call irregardless of whether the advice invoked the method.

Before considering a pair of examples, it may help to reexamine how aspects help solve the crosscutting

dilemma. The isolation of points where crosscutting concerns intersect the base implementation is done by

the use of carefully formulated pointcuts. The behaviour ofthe crosscutting concern at these intersection

points is then managed by the use of advice, although the expression of crosscutting behaviours may also be

implemented by augmenting object interfaces and other techniques. The crosscutting concern is managed by

aggregation into aspects, promoting the modularity and reusability of the concern.

3.1.3 Example Aspects

§30 Caching. ≪Presentation of a simple but extremely effective aspect to transparently cache.≫

Caching is an example of a crosscutting problem introducinga high amount of localised class pollution.

Caching results of class or instance operations is typically implemented locally via the storage of precompu-

tations or previous results. Furthermore, all methods producing cachable results, need to be augmented with

code to service the implemented caching arrangement. This arrangement need not be uniform and different

classes may implement local caching in different ways. Whilst this may be desirable for domain specific

40

3.1 Introduction to Aspects

reasons, it is nevertheless scattered code and difficult to maintain and a developer must completely appreciate

the particular caching requirements of a class before making changes or updates.

Such localised caching implementation is difficult to centralise without coupling classes participating

in caching with a dedicated caching class. This coupling limits class reuse in that classes must bring this

dedicated caching support with them. But there are sound reasons to centralise caching, this being the only

way to implement consistent cache policies5 robust to changes in backing storage.

Taken over an entire application, the caching concern has damaging local effects. Every class requiring

caching functionality is polluted with fields and code solely serving the caching objective and not that of the

underlying class. In this way, class cohesion is damaged, for consider an implementation which requires only

optional caching. Implementing separate cacheless classes in the hierarchy is undesirable since it introduces

update dependencies. On the other hand, it creates other difficulties to allow cache equipped classes to disable

caching. Aside from adding more incohesive code to an already polluted class, there is little point having

caching code and structures if they may never be used..

Fortunately, aspects can help and indeed caching is a clear example of the benefits which aspects can

introduce to a system design. It provides a viable alternative to the above problematic designs, solving the

caching implementation difficulties. The use of aspects in caching is both straightforward and extremely

effective. Caching, together with logging, is one of the killerapplications for aspects.

The caching aspect implementation involves centralising the caching backing datastructures in an aspect,

and updating these structures blind to the classes on which the caching is applied. Each method that is cached

or precomputed is captured by a pointcut in the caching aspect. This pointcut is then advised as to how to

implement caching for that method. The caching aspect then consists of pointcuts for all the methods to be

cached, the relevant advice, and the backing datastructures.

Say, for instance, that an application wishes to implement caching, or precomputation tables, for various

often used trigonometric functions. Suppose further that acacheless version of the application has already

been implemented that employs the library trigonometric functions from the Java API. With aspects, it is not

even necessary to change the references to the library functions in the base application. Instead, a caching

aspect is written that advices the operation of these library functions to serve the caching goal.

Take the case of the sine function, the other functions beingtreated similarly. The caching structures

for the sine results are implemented within the cache aspect, be it in a lookup table, a hashtable of previous

computations or whatever. The cache aspect will also contain a pointcut capturing the join point representing

invocations of the sine function in the Java Math libraries.This pointcut is given around advice, meaning that

it can mask the actual library sine invocation by providing alternative results. The actual advice first considers

the sine function parameter, available in the reflective metadata passed to the advice. If the parameter can be

served from the cache data, i.e., is present in the lookup table or prior computations table, then this answer

may be provided directly to the caller without requiring an invocation of the Java library method. On the

other hand, if a result is not available in the cache, the library method can be invoked and the result appended

to the caching aspect data store before being returned to thecaller.

41

3.1 Introduction to Aspects

The use of trigonometric examples is somewhat trivial in that the Java library implementations are already

efficient and caching aspect overhead would be prohibitive. This particular domain is used for illustration

only. The aspect application pattern remains the same even for more complicated and intensive operations.

This proposed cache aspect solves the design problems described earlier. In particular, it deals with the

scattered caching code. All caching code is contained directly within the caching aspect, and base objects are

ignorant of whether received results are served from cache structures or from direct method invocations.

Excising caching code from the base objects removes all caching induced coupling and code pollution, in-

creasing cohesiveness. Centralising the caching code alsomeans that implementations and policies may vary

independently of the base classes without requiring systemwide refactoring efforts. Note that implementing

different caching policies for different elements is possible, since methods may be categorised into pointcuts

based on the caching policy to apply and this policy may be implemented in custom pointcut advice.

Also note that optional caching is easily managed within theaspect approach. Globally, caching may

be disabled by either using a Boolean flag in the cache aspect,or simply not loading the aspect. This latter

solution involves absolutely no overhead whatsoever, whilst the former introduces some unnecessary stack

frames and operations. However, the former approach can be refined to offer caching on a optional per

method, or pointcut, basis. In this case, whatever overheadis incurred would have been incurred by optional

caching support in a nonaspect based implementation of caching anyway. Only in this case, the code would

also have been scattered. With an aspect based implementation, the advantages of a separate hierarchy style

design for optional caching are leveraged without any of theassociated update maintenance problems.

Caching remains one of the most convincing aspect designs. The implementation is successful in solving

many of the problems that blight traditional OO caching design. Notice the manner in which the developer

is freed from considering the crosscutting concern in everyclass of the application, and can focus on imple-

menting the base class modulo difficult crosscutting dilemmas. Only once an efficient and well designed base

application is implemented, need the developer begin to focus on crosscutting concerns.

The ability to concentrate on a proper implementation, onlyto later layer the many crosscutting concerns

on top of this, is the goal and promise of AOP. The need to mix crosscutting concerns with base implementa-

tion is a deficiency in the OO design process.

§31 Logging. ≪Logging aspect design and use≫

Logging and tracing support is the second example aspect application, and bears some initial similarity to

caching. Many crosscutting concerns are similarly effectively tackled with this basic aspect pattern.

The logging aspect tackles the crosscutting concern of reporting occurrences of particular conditions and

software events. At such an interesting event, the logging aspect is to augment a log file, or console output,

with a brief text message describing the condition. The logging aspect design is to log in the manner of the

Log4J package, without requiring the scattering of loggingcalls throughout the logged application.

Preventing scattering yields the same benefits as in the caseof caching. But a particular issue to logging

is internationalisation. By centralising logging operations and associated messages, internationalisation and

42

3.1 Introduction to Aspects

translation is simplified. This is not an alternative to gettext or other well-designed internationalisation tools,

but serves to motivate a potential benefit in smaller applications.

Although logging may be implemented using existing architectures and tools, there are distinct advantages

in using aspects. Apart from minimising log call scattering, there is also the reduction of string construction

operations associated with logging calls. Typically, a logcall made from within an application might involve

string concatenation to form the display message. This concatenation can be a serious overhead when done at

the point of the logging call, especially if logging may be disabled in the application. For although disabled,

an application may still be stuck with the unnecessary string concatenations. Using aspects can avoid this.

A logging aspect, firstly, possesses a backing log mechanism, either handcrafted or leveraged from an

existing logging framework. In addition, the aspect can maintain the list of log messages, by the use of an

external system like gettext, by listing the messages statically, or by other means.

To implement logging calls without polluting the class sourcing the log event, a pointcut is designed to

capture the desired event. This event may be a method invocation, a field access, or usefully, any Boolean-

testable Java occurrence. So, timing and condition events depending on scattered state can be easily checked

also. On tripping a specific pointcut, advice sends the relevant message to the logging backend.

Log message scattering is significantly reduced in this scheme, and string concatenation penalties may be

avoided when logging is disabled. If string concatenationsare done within the aspect advice, and if logging

is disable by not loading the logging aspect, then the stringconcatenations are bypassed.

Before leaving the issue of aspect logging, it should also benoted that logging is just one of many useful

aspect applications in debugging. The ability to inject documentating actions into a class without modifying

that class is a great debugging convenience. For instance, aspects can be written to print stack traces during

execution, to display formal parameter values on method invocations, dump instance field contents at selected

events such as exceptions and in not-possible control flow, etc. These, and other creative aspect applications

in the debugging process, are easy to implement and of practical value.

3.1.4 Aspect Use in WebCom

This project has either trialled or included a number of aspect applications within WebCom, including using

aspects for internals assertion checking and for logging existing log messages.

The logging application highlighted the necessity to design applications with aspects in mind. In the case

of WebCom, a mature logging implementation already existedbefore an aspect implementation thereof was

considered. With the restrictions of traditional OO design, this existing logging support was highly scattered,

and given the extensive use of logging it proved too time-intensive to refactor into an aspect. This is a case

of the damage already being done, and merely highlights reasons to encourage aspects use.

There is also potential for the use of caching aspects withinWebCom. In particular, caching may be used

on referentially transparent operators to great effect. These operators are already identified and optimised

within WebCom anyway, and the use of caching aspects may streamline these operators even to the extent that

43

3.2 Event API

they need not be explicitly segregated within WebCom in order to apply optimisations. A uniform treatment

of operators, with cache optimisation for referentially transparent operators, would improve efficiency.

Debugging support aspects are commonly used to help isolateproblems within WebCom, and illustrate

further aspect utility within WebCom, even if they are absent from the deployed WebCom version.

However, perhaps the most interesting aspect application within WebCom is the Event API, the focus of

the next section. This API facilitates informing interested parties of events within the WebCom core without

requiring this core architecture to propagate or even be aware of these events. This application of aspects is

also invisible to the end programmer, and forms part of the Module API, the subject of Chapter 4. Aspects

play a critical role in the overall design of the Module API, in that the API design is guided by a requirement

not to modify or pollute the core WebCom architecture.

The introduction of the aspect compiler and the proliferation of aspects behind the scenes in WebCom, is

also interesting from a paradigm point of view. The section on the Event API illustrates the use of aspects in

facilitating an event driven programming component withinWebCom. This Event API architecture may be

used, or abused, by endusers to program WebCom applicationsand modules in an event driven fashion.

Presenting new programming paradigms for enduser module programming is a major theme of this disser-

tation. The Event API, not to mention the AOP support, adds tothe capabilities already available to module

programmers. Note, that module programmers are free to use and construct aspects within the implementa-

tion of custom modules, hence the enduser availability of AOP.

Furthermore,logic programming facilities will also be made available later in the course of supporting

type checking. The type checker implementation involves adding a general purpose resolver to the WebCom

architecture, and this resolver also makes logic programming methodologies available to module designers.

In fact, the type checker module is interesting in that it blends traditional OO, logic programming, and even

event driven techniques under the guise of the aspects in theEvent API.

3.2 Event API

§32 Event API and Origins. ≪High-level description of the Event API. Reasons promptingdevelopment of this API≫

The Event API, part of the wider WebCom Module API documentedin Chapter 4, is an interface providing

module writers with information regarding events occurring within the WebCom core, without requiring

modification to this core WebCom. This event information availability is crucial in effective module writing,

yet ringfencing the vulnerable core WebCom from code pollution is likewise essential. Modifying core code

for the purposes of implementing optional third party modules should justifiably be prohibited.

The Event API is implemented via aspects, but hides this factfrom Event API users. Aspects provide the

mechanism to make Event API users aware of events without modifying the core WebCom classes.

The WebCom core consists of the backplane, providing moduleloading and message passing, together

with some core basic modules. These modules include the connection manager, the load balancer, the sched-

uler, the fault tolerance module, engine module and security module. However, these modules themselves are

44

3.2 Event API

not core. It is rather the roles and interactions of these modules within WebCom that is core. For instance,

the particular implementation of the scheduler module is not á prior core and may be replaced as desired by

equivalent scheduler modules. However, the scheduler is required to behave according to certain rules and

this is core to the WebCom machine. Historically, this interaction was encoded in a particular base scheduler

implementation and has evolved with changes to this implementation. This is undesirable, since core object

specification moves based on reference implementation changes, whereas the opposite should be the case.

This is true of all the core components, although the actual impact varies. The engine and security mod-

ules are relatively straightforward in their operation anda semantics could be easily outlined. The connection

manager operates in a manner that often divorced from the other modules, and may be tackled in isolation,

something which simplifies specification. The remaining modules, the scheduler, load balancer, and fault

tolerance modules have necessary interdependencies that bind their specifications into a single component.

The unfortunate upshot is that WebCom internals specification depends on the implementation of a set of

reference modules. It is essential therefore to protect these implementations and their stability. And it is to

this end that the Event API most serves a purpose.

The implementation of interesting additional functionality in WebCom often involves the augmentation

of these core modules, and a consequent alteration of core module specifications. Typically, this specifica-

tion update need not really be required for the additional functionality, e.g., the implementation of statistics

collection should be orthogonal to core module purposes. Inpractice, it is necessary to change core modules

to implement statistics generation. This is undesirable.

In the case of statistics module and some other cases, providing event data is the sole function of core

module changes required. And if more detailed core module modifications are necessary for the particular

extension demands, the extension will still also require event data anyway. So, even if an application still

necessitates core modifications, these can at least be mitigated by limiting the event generation modifications.6

Reducing the need to modify core WebCom classes for event generation purposes is a first step in remov-

ing code pollution in core modules. The Module API, see next chapter, is designed to further reduce core

code pollution by addressing other typical requirements ofextension writers, including module presentation.

It is critical to appreciate that code pollution proliferation in the reference modules also pollute WebCom

core specification. This has made it virtually impossible toimplement alternative core modules, since the

specification is informal and likely to move from under any alternative implementations. This situation

damages confidence in the kind of modular architecture that WebCom professes.

3.2.1 Aspect based event system

§33 Event System Implementation Difficulties. ≪A summary of the difficulties≫

Essentially, a mechanism is needed to inform interested parties of the occurrence of a specific events within

the core set of WebCom modules. This must be implemented withthe least amount of modification in existing

code, and furthermore, be robust to changes in the base core modules. It should be possible to augment the

45

3.2 Event API

event set with new events, as determined to be useful in future development, without requiring significant

modification. Neither should the addition of new events be vulnerable to changes in the core module code.

These requirements are articulated to highlight aspect strengths and indeed the aspect based solution does

satisfy these requirements. In particular there is almost no modification in the existing WebCom, the only

modification being a trivial code rearrangement, entirely for convenience.

Deck stacking aside, the aspect based implementation outlined below is superior to a tradition implemen-

tation, which could not avoid introducing event dispatch code at relevant places in the core code. This falls

foul of all the inherent problems in such crosscutting and scattering, so despite any clever engineering, the

implementation will be crippled by this scattering.

Maintenance would be excessively timeconsuming. For example, removing an event would mean locat-

ing and excising all dispatch instances for that code withinthe core classes. Similarly, adding an event would

require locating, by hand, all positions in the code base where this event occurs and inserting dispatch code.

Accidental error introduction aside, there remains a problem inheriting these events into subclasses. A tradi-

tion solution is just not feasible. It is impractical to implement the reference classes, and module hierarchy

bases, in a template method fashion in order to permit subclasses to acquire event hooks by very selective

extension of superclasses. It does not work either since it is not robust to the introduction of new events. A

new event would potentially mean changing the base class andits template method structures, necessitating

further changes in all implemented subclasses.

§34 Lightweight aspect events. ≪The aspect based solution.≫

Aspects permit a robust event system implementation with minimal modification to the existing code. The

implementation is straightforward also. Essentially, thesource code positions of required events are captured

by pointcuts. It is worth noting that these events often haveproperties suitable for concise pointcut capture.

For instance, operator triggering is an event of interest, and the operator interface specifies the exact name

of the operation implementation method. So, a pointcut expression can be made using wildcards to capture

all these operation methods, rather than do so by tracking internal WebCom management and invocation

structures that may be subject to future change.

Once pointcuts have been designed to capture event locations, one event group per pointcut, advice can

be used to dispatch events indications. That is, each event type is captured by a specific pointcut, which is

then advised how to generate and dispatch corresponding event objects. An aspect aggregates these pointcuts

and relevant advice, and also maintains the event dispatch code and listener lists. Event dispatch is done in

an essentially identical manner for each event type and benefits from central management.

The reflection metadata at the pointcut advice can be used to extract parameters and details pertaining to

the generated event. For instance, join point metadata can be used to populate an event object with operator

and operand references in the case of an operator trigger event.

Using aspects in a lightweight event system has many advantages, beyond those described earlier. Dis-

abling events is then trivial, and may make sense in the WebCom context. The Event API system is only

46

3.2 Event API

intended to provide information to interested parties, theprovision of such data is not demanded or guar-

anteed. If a site administrator decides to optimise WebCom purely for basic job execution, then the event

system is overhead. With aspects, this overhead may then be eliminated, without requiring a recompilation.

§35 Adaptor Interfaces. ≪Obsfucation of aspect implementation. Presentation of event system as traditional OO API≫

Aspect based implementation presents some difficulties, especially in an environment that is new to AOP.

As such, it is desirable to minimise overlap between aspectsand core interfaces, reducing the threshold for

group developer contribution. Interfacing with aspect based code requires some AOP familiarity and for many

developers in large systems like WebCom, there is little immediate requirement to learn aspect techniques.

Incorporating an aspect based subsystem needs to done with minimal necessary paradigm shifting.

The use of adaptor interfaces is important within the Event API for exactly these reasons.7 The adaptor

pattern is used to present a traditional event dispatch-response interaction to module developers. Specifically,

client application register for events and are called back with event description objects on occurrence of these

events. Nowhere in client code is the aspect based implementation of the Event API visible.

Consider the example scenario of an event propagation. Client code expresses interest in a particular event

by registering with an Event API management object, and is added to a listeners list. The aspects capture

events and dispatch them to the client code by way of this Event API management object.

The Event API consists essentially of static elements. Listener lists are maintained on a class basis, as

are the event propagation callback methods used by the aspect. And whilst there is an indirection penalty,

it can be aggressively optimised. This penalty really consists of the extra static class and of an additional

method invocation per event. The list management functionality of the static management class is required,

and eliminating this class would mean moving this functionality to the aspect anyway.

The extra method call is to a small static method which may be inlined easily. This inlining is simplified

since the method only requires data read access to the list objects within the static management class. Because

this data is also static, references may be used within the event aspect.

The static middleman class might be incorporated into the event dispatch aspect at the cost of requiring

client code to register with the aspect, instead of with a static class. The registering would be done via a static

method in any case, so end users might still pretend that the invocation were being done on a class.8

The advantages of nonaspect client code is significant and worth the overhead, optimised out anyways.

There is benefit in facilitating third parties to ignore the aspect nature of the code and yet still apply the API.

3.2.2 Event API Implementation

§36 API and UML. ≪An examination of the UML outline for the Event API organisation.≫

Figures 22 and 23 detail the implementation of the Event API,with Figure 22 illustrating the aspect imple-

mentation and OO masking. Note, class notation for aspects in this figure is incorrect but unavoidable.

The EventAPIAspect aspect maintains pointcuts capturing a range of events within the WebCom in-

ternals. Sample events include instruction creation and execution, message transmission, graph memory

47

3.2 Event API

EventAPIManager
Listener and dispatch management for EventAPI Aspect

-listeners: Set

Listeners list

+addListener(in listener:EventAPIListener): void

Attach listener
+removeListener(in listener:EventAPIListener): void

Detach a listener
+getListeners(): Iterator const

Return listeners
+newInstructionInEngineModule(in api:API,in instr:Instruction): void

Relay new instruction events
+newInstructionInWebCom(in api:API,in instr:Instruction): void

Relay new instruction event
+instructionExecutionInEngineModule(in api:API,in instr:Instruction): void

Relay instruction execution event
+instructionReceived(in api:API,in instr:Instruction): void

Relay receipt of instruction event
+instructionTransmitted(in api:API,in instr:Instruction,in desc:Descriptor): void

Relay transmission of instruction event
+resultReceived(in api:API,in rst:Result): void

Relay receipt of result event
+backplaneAddResult(in api:API,in rst:Result): void

Relay receipt of foreign result event
+backplaneSentMessage(in api:API,in msg:Message): void

Relay transmission of message event
+engineAllocatedGraph(in api:API,in cg:CondensedGraph): void

Relay allocation of graph memory event
+engineDeallocatedGraph(in api:API,in cg:CondensedGraph): void

Relay deallocation of graph memory event
+engineQueueNode(in api:API,in node:Node): void

Relay node queuing event
+engineQueueResult(in api:API,in rst:Result): void

Relay result queuing event
+engineRun(in api:API): void

Relay engine start event
+engineSendResult(in api:API,in rst:Result): void

Relay return of result event
+engineResultSent(in api:API,in rst:Result): void

Relay successful result return
+schedulerScheduleInstruction(in api:API,in instr:Instruction): void

Relay instruction scheduling event
+loadBalancerAskForClient(in api:API): void

Relay load balancing event
+loadBalancerQueueInstruction(in api:API,in instr:Instruction): void

Relay load balancing queuing event
+conmanRedirectTo(in api:API,in source:Address,in target:InetAddress): void

Relay a WebCom redirection event
+conmanRemoveDescriptor(in api:API,in desc:Descriptor): void

Relay client detach event
+conmanRelinquishClients(in api:API,in address:InetAddress): void

Relay the relinquishing of clients
+conmanCreateDescriptor(in api:API,in sock:Socket): void

Relay the construction of a new descriptor
+conmanDisconnectFrom(in api:API,in address:InetAddress): void

Relay disconnection from parent
+loggerLogWarning(in message:String): void

Relay a logged message
+loggerLogSevere(in message:String): void

Relay a logged message
+loggerLog(in message:String): void

Relay a logged message
+loggerLogFine(in message:String): void

Relay a logged message
+loggerLogException(in e:Exception): void

Relay a logged Exception
+loggerLogFatalException(in e:Exception): void

Relay a logged exception
+beforeAPILoadModule(in api:API,in module:String): void

Relay a module load event
+afterAPILoadModule(in api:API,in module:Module): void

Relay a module load event
+beforeAPIUnloadModule(in api:API,in module:String,in force:boolean): void

Relay module unload event
+afterAPIUnloadModule(in api:API,in module:Module,in force:boolean,in consent:boolean): void

Relay module unload event

<<Aspect>>

EventAPIAspect
Event capture and dispatch aspect

-apis: Map

Witnessed WebCom machine instances

+newInstructionInEngineModule()

New instruction pointcut and advice
+newInstructionInWebCom()

New instruction pointcut and advice
+instructionExecutionInEngineModule()

Instruction execution pointcut and advice
+instructionReceived()

Receipt of instruction pointcut and advice
+instructionTransmitted()

Transmission of instruction pointcut and advice
+resultReceived()

Receipt of result pointcut and advice
+backplaneAddResult()

Receipt of foreign result pointcut and advice
+backplaneSentMessage()

Transmission of message pointcut and advice
+engineAllocatedGraph()

Allocation of graph memory pointcut and advice
+engineDeallocatedGraph()

Deallocation of graph memory pointcut and advice
+engineQueueNode()

Node queuing pointcut and advice
+engineQueueResult()

Result queuing pointcut and advice
+engineRun()

Engine start pointcut and advice
+engineSendResult()

Return of result pointcut and advice
+engineResultSent()

Successful result return pointcut and advice
+schedulerScheduleInstruction()

Instruction scheduling pointcut and advice
+loadBalancerAskForClient()

Load balancing pointcut and advice
+loadBalancerQueueInstruction()

Load balancing queuing pointcut and advice
+conmanRedirectTo()

WebCom redirection pointcut and advice
+conmanRemoveDescriptor()

Client detach pointcut and advice
+conmanRelinquishClients()

Relinquishing of clients pointcut and advice
+conmanCreateDescriptor()

Construction of a new descriptor pointcut and advice
+conmanDisconnectFrom()

Disconnection from parent pointcut and advice
+loggerLogWarning()

Logged message pointcut and advice
+loggerLogSevere()

Logged message pointcut and advice
+loggerLog()

Logged message pointcut and advice
+loggerLogFine()

Logged message pointcut and advice
+loggerLogException()

Logged exception pointcut and advice
+loggerLogFatalException()

Logged exception pointcut and advice
+beforeAPILoadModule()

Module load pointcut and advice
+afterAPILoadModule()

Module load pointcut and advice
+beforeAPIUnloadModule()

Module unload pointcut and advice
+afterAPIUnloadModule()

Module unload pointcut and advice

Relays to1 1

Figure 22: UML Diagram Event API Part I.

48

3.2 Event API

EventAPIManager

+addListener(in listener:EventAPIListener): void

+removeListener(in listener:EventAPIListener): void

+getListeners(): Iterator const

+newInstructionInEngineModule(in api:API,in instr:Instruction): void

+newInstructionInWebCom(in api:API,in instr:Instruction): void

+...()

+...()

+beforeAPIUnloadModule(in api:API,in module:String,
 in force:boolean): void

+afterAPIUnloadModule(in api:API,in module:Module,
 in force:boolean,in consent:boolean): void

<<Interface>>

EventAPIListener
Listener interface for Event API

+newInstructionInEngineModule(in api:API,
 in instr:Instruction): void

New instruction events handler
+newInstructionInWebCom(in api:API,in instr:Instruction): void

New instruction event handler
+instructionExecutionInEngineModule(in api:API,
 in instr:Instruction): void

Instruction execution event handler
+instructionReceived(in api:API,in instr:Instruction): void

Receipt of instruction event handler
+instructionTransmitted(in api:API,in instr:Instruction,
 in desc:Descriptor): void

Transmission of instruction event handler
+resultReceived(in api:API,in rst:Result): void

Receipt of result event handler
+backplaneAddResult(in api:API,in rst:Result): void

Receipt of foreign result event handler
+backplaneSentMessage(in api:API,in msg:Message): void

Transmission of message event handler
+engineAllocatedGraph(in api:API,in cg:CondensedGraph): void

Allocation of graph memory event handler
+engineDeallocatedGraph(in api:API,in cg:CondensedGraph): void

Deallocation of graph memory event handler
+engineQueueNode(in api:API,in node:Node): void

Node queuing event handler
+engineQueueResult(in api:API,in rst:Result): void

Result queuing event handler
+engineRun(in api:API): void

Engine start event handler
+engineSendResult(in api:API,in rst:Result): void

Return of result event handler
+engineResultSent(in api:API,in rst:Result): void

Successful result return handler
+schedulerScheduleInstruction(in api:API,
 in instr:Instruction): void

Instruction scheduling event handler
+loadBalancerAskForClient(in api:API): void

Load balancing event handler
+loadBalancerQueueInstruction(in api:API,
 in instr:Instruction): void

Load balancing queuing event handler
+conmanRedirectTo(in api:API,in source:Address,
 in target:InetAddress): void

WebCom redirection event handler
+conmanRemoveDescriptor(in api:API,in desc:Descriptor): void

Client detach event handler
+conmanRelinquishClients(in api:API,in address:InetAddress): void

Relinquishing of clients handler
+conmanCreateDescriptor(in api:API,in sock:Socket): void

Construction of a new descriptor handler
+conmanDisconnectFrom(in api:API,in address:InetAddress): void

Disconnection from parent handler
+loggerLogWarning(in message:String): void

Logged message handler
+loggerLogSevere(in message:String): void

Logged message handler
+loggerLog(in message:String): void

Logged message handler
+loggerLogFine(in message:String): void

Logged message handler
+loggerLogException(in e:Exception): void

Logged Exception handler
+loggerLogFatalException(in e:Exception): void

Logged exception handler
+beforeAPILoadModule(in api:API,in module:String): void

Module load event handler
+afterAPILoadModule(in api:API,in module:Module): void

Module load event handler
+beforeAPIUnloadModule(in api:API,in module:String,
 in force:boolean): void

Module unload event handler
+afterAPIUnloadModule(in api:API,in module:Module,
 in force:boolean,in consent:boolean): void

Module unload event handler

EventAPIListenerAdaptor
Blank listener interface implementation for Event API

+newInstructionInEngineModule(in api:API,in instr:Instruction): void

Blank implementation
+newInstructionInWebCom(in api:API,in instr:Instruction): void

Blank implementation
+...()

+...()

+beforeAPIUnloadModule(in api:API,in module:String,in force:boolean): void

Blank implementation
+afterAPIUnloadModule(in api:API,in module:Module,in force:boolean,
 in consent:boolean): void

Blank implementation

Manages1 n

adapts

<<Aspect>>

EventAPIAspect

+newInstructionInEngineModule()

+newInstructionInWebCom()

+...()

+...()

+beforeAPIUnloadModule()

+afterAPIUnloadModule()

Figure 23: UML Diagram Event API Part II.

49

3.2 Event API

allocation, etc. At event capture, pointcut are advised howto extract pertinent data from the reflective data

structures. For instance, at new instruction events, the WebCom instance is stored in anAPI reference, and

the actual new instruction in anInstruction reference. This event data is then passed to interested clients.

The actual propagation is done via theEventAPIManager class, which maintains and manages interested

listeners. When the aspect raises an event, it forwards the event and relevant data to a matching method in

theEventAPIManager class. This method then informs registered listeners of theevent.

Interested parties implement theEventAPIListener interface, or alternatively implement the blank

adaptorEventAPIListenerAdaptor, from Figure 23. This interface lists the matching methods that the

EventAPIManager class invokes to forward event notifications it receives from the aspect.

Since these event interfaces are registered via theregisterListener method of the manager class, the

Event API appears as a traditional Observer pattern to thirdparty programmers. Note, only the registration

methods inEventAPIManager and theEventAPIListener interface need be visible to third parties, making

the pattern appear traditional even though it is implemented via theEventAPIAspect aspect.

A developer wishing to use of the Event API need only implement and register aEventAPIListener

interface to respond to available WebCom events. A basic example of this relatively straightforward devel-

opment cycle will be demonstrated in the next section. However, this is still not a fully workable solution to

end programmer requirements, since it misses mechanisms todirectly query the WebCom core and to request

particular WebCom actions. These are the subject of the Module API, the focus of Chapter 4, which together

with the Event API constitutes a fully featured API while maintaining the integrity of WebCom internals.

3.2.3 Applications

The production of an event trace tool forms a simple illustration of the Event API. This tool reports on all

exported event detail from the WebCom core in text format. Such a tool has applications both in debugging

WebCom interactions and in providing information on internal WebCom state transitions. An events listing

may also partly substitute for a core dump within a specialised WebCom debugger.9

The development of the tracing module demonstrating the ease of Event API application. The main pro-

gramming is contained within theDebugEventAPIListener extension of theEventAPIListenerAdaptor

class. This listener maintains aPrintWriter object, or output stream, to forward details of generated events.

This output is constructed with the listener, together withshutdown hooks to close and tidy resources.

The DebugEventAPIListener responses to all the generated event endpoints available and dumps a

text based description of each to the maintained output stream. This is the full extent of the programming

required, and consists of little more than I/O output statements in the listener interface methods.

There is some additional framework code outside of theDebugEventAPIListener class that has to do

with a supporting skeleton module and with listener loadingand unloading. This code is minimal, comprising

a module to just perform listener registration, thereby starting the event tracing operation. The mechanism

by which this simple module is loaded into WebCom and set in operation is the focus of the Module API and

covered in the next chapter.

50

3.2 Event API

EvenE XNOT

Figure 24: Odd parity testing graph.

By way of brief example, consider the graph in Figure 24. Thislinear graph returns a Boolean indicating

whether the input integer has odd parity. An execution eventtrace of this graph is included in full in Appendix

B, together with an outline description of the event sequence. This is useful for a detailed understanding of

WebCom processing, but is unnecessary for the purposes here. Instead, some illustrative sample events will

give the necessary flavour.

The following event illustrates construction of a new instruction to handle the toplevel graph as a dynamic

operator. The new instruction refers to the condensed operator, although the reference is not so helpful.

newInstructionInWebCom :-

webcom.core.Instruction@1e6e305

operation main

The next example event demonstrates the capture of a messagetransaction within WebCom. At this point,

the WebCom core is passing a message containing the toplevelinstruction created above.10

backplaneSentMessage :-

EngineMessage: source = agador/143.239.211.35 module value: top level,

destination = agador/143.239.211.35 module value: engine,type = INSTRUCTION,

data = webcom.core.Instruction@1e6e305

The final example event illustrates event callback on the execution of an instruction within the engine module.

instructionExecutionInEngineModule :-

webcom.core.Instruction@9abc69

operation webcom.nodes.core.EvenOp

These examples demonstrate some of the events available forcapture. There is a wide range of events that

interested parties may listen for, encouraging the design of versatile applications. Although the event trace

application is somewhat trivial, it is nevertheless quite useful. However, more potentially interesting example

applications have been deferred until the Module API harness structure has been outlined, and there will be

further demonstration of the Event API within useful modules and applications in the next chapter.

3.2.4 Final remarks

This general pattern in using aspects to engineer an event system exposing conditions and occurrences, whilst

protecting the integrity of a core software artifact, may bedeployed in other circumstances. Although in

51

Chapter Notes

WebCom, there is no other immediate cohesive core block thatmight benefit from a similar design, this

general means of ringfencing fragile code can still be reused to benefit in other applications.

The Event API system provides yet another example of how aspects may be used to cleanly manage

difficult crosscutting concerns. In this case, the aspect designsimplifies the implementation of what would

otherwise be a severely scattered event dispatch system. Moreover, it would not have been practical to retrofit

such a scattered event dispatch mechanism in the core code base. In this sense, AOP has enable functionality

which otherwise would have been excessively timeconsumingto implement and maintain.

The next stage of development is to fit this Event API into a wider module support framework, including

load, query and operation mechanisms. This will form the implementation framework for the eventual type

checking application, and is the subject of the next chapter.

Chapter Notes
1The use of a small Jar library is required at runtime to enable the aspect constructs, though.
2Although phrased in terms of adding a new component to a system, this problem should have been addressed in isolation even if

security was an initial element of the software. Presentation in terms of refactoring simply highlights the particular crosscutting concern.
3The difference being that on method invocation control flow lies outside the method being called, whereas upon method execution,

control flow lies within the called method.
4The distinction between instance and static members is more subtle in aspects than in classes. The typical arrangement is that there

is a single instance of a particular aspect per Java Virtual Machine. In this circumstance, the difference between static and instance

members is simply one of initialisation. It is possible, however, to arrange aspects on a per object or control flow basis, in which case

the difference between instance members and static members is the same as in classes.
5Even if policies vary between classes, they may still be managed centrally to greater effect than in local caching implementation.
6The actual goal of the Module API is to remove all reasons to modify core modules to achieve particular extensions. But it remains

the case, that events are a separate concern and explains whythe Event API is really a component of the Module API.
7The original ideas for adaptor interfaces were suggested byKeith Power.
8Which in fact it is since the aspect is likely to be realised by AspectJ as a class together with additional code to trap the aspect

pointcuts and forward to the aspect advice. The advice is naturally likely to be implemented as methods in the implementation class.
9A WebCom debugger or replayer is under current development and although, eventually may not be based on the Event API

architecture, still represents a potential application ofthe Event API.
10It is the same instruction because the references match.

52

4
Module API

The Event API can be complemented by providing support for twofurther areas within the sphere of

module programming. These areas include the mechanisms andsemantics for loading, unloading

and configuring modules into a running WebCom system, together with the means of querying and

requesting the core WebCom to undertake particular actionson behalf of a module.

The Event API together with these additional components arecollectively referred to as the Module API.

However, this chapter will focus almost exclusively on the two new components, only mentioning the Event

API in passing. There is Module API term is often used to referto the querying and action operations

exclusively, note. This usage excludes both the loading mechanism and the Event API.

The design philosophy behind the Module API will be described, together with sketch implementation

details in the first half of this chapter. The remainder covers examples of the application to information gath-

ering and actioning operations within the module loading context. These examples illustrate the versatility of

the new organisations and how they are used to engineer more pervasive WebCom operation modes.

4.1 Module API

The Module API implementation makes two primary modifications to existing WebCom structures. The first

adds anAPI class to represent a single WebCom instance, and to facilitate query and operation interactions

with that WebCom. Although, existing classes may be used to refer to a WebCom instance1, it is better to

53

4.1 Module API

abstract the concept of a running WebCom from its implementation. TheAPI class, detailed later, is also the

handle returned by Event API callbacks referencing the operation context sourcing a particular event.

The second main programming change involves modifying the WebCom internals to arrange for uniform

loading and unloading. The adoption of a uniform load process, and retrofitting it to core modules, greatly

improves the scope for third party modules. Such modules maythen be programmed and incorporated seam-

lessly into WebCom instances in a simplified manner. These loading triggers and callbacks together with a

refined addressing scheme2 form the dynamic load mechanisms and will also be covered in more detail later.

The most interesting facet of the Module API, though, is in the reworking of the module role within

WebCom. Changes within the Module API introduce a more powerful and flexible view of modules. So,

even while the changes are fundamentally simple, they present a subtle and important change. These changes

are incremental, extending the existing module concept andapplying it in circumstances previously either not

possible nor envisioned. The next section considers this new position and module philosophy.

4.1.1 Philosophy

Reworking the module code raises new potentials for the module system, include the promotion of modules

to first order elements within WebCom. While currently, modules are the main component of WebCom, the

new structures make it practical to specify that modules aretheonly permitted WebCom components. This

is, modulo some base plumbing, reworking the WebCom design into a completely plugin architecture.

With a plugin3 architecture, there is increased facility to isolate and protect core WebCom components.

These core plugins, or modules, may be detached and stronglyringfenced, in this way reducing code pollution

and maintenance trauma. This extends the guiding philosophy employed in the use of aspects earlier.

Another main change in WebCom practice is the introduction of dynamic module loading and unloading,

as a byproduct of the uniform loading mechanism. This is support and scope for changing the running Web-

Com environment, for changing the capabilities and the operation support available. There is even potential

to load core WebCom facilities and even instances, in some senses, as modules. This is particularly useful in

conjunction with the IDE and other graphical WebCom tools, as will be seen in the examples later.

Although these constitute the primary changes in outline, they neglect some of the lesser new features.

These are explored somewhat, but not exhaustively, in the example modules and include concepts such as

GUI modules, bridge loader modules, the construction of WebCom applications from collaborating basic

modules, and the aforementioned use of modules to instantiate WebComs and other WebCom artifacts.

§37 Completely Plugin Architecture. ≪WebCom as a confederation of interacting modules≫

Nearly everything within WebCom may be considered as a potential module, and implemented via the module

construct. That is, all functionality outside of the basic graph representation and handling, and the otherwise

bare minimum in WebCom could be implemented in module form.

Take the Eclipse IDE as a model, being as it has illustrated the purely plugin design philosophy to a

wide audience. In Eclipse, everything barring the bootstrap is implemented in a plugin. Now WebCom itself

54

4.1 Module API

already has a strong module philosophy, and with a subtle shift in viewpoint, could easily be similarly viewed

as module-everywhere or purely plugin. The ramifications ofthis for future design are significant.

Promoting a purely plugin WebCom architecture does not meanthat modules are all equal. It should

be emphasised that there are two very distinct classes of modules. The core modules, like the engine and

connection manager, are fundamental to WebCom operation and an instance of each must always be present.

Noncore modules fall into a category of entirely optional modules. A site administrator may load or unload

these modules to form WebCom configurations.

Because there are firmly two classes of modules, loading uniformity is not perfect in that the bootstrap

must always orchestrate a core set of modules. But aside fromthis, the interface offered to modules can be

entirely uniform. Once a core WebCom can been acquired, all modules operate according to the same rules.

It is the case, of course, that the more important core modules already have defined interactions, which bind

these modules into a cooperating tool to drive graph reductions.

Although core modules are not independent, there are no requirements for optional modules to be depen-

dent on other modules. There will, presumably, be dependencies on core WebCom modules and for instance,

on the message passing structures available via a backplanemodule, but there is no reason why optional mod-

ules need cooperate with other modules to perform tasks. Optional modules may either stand alone modules

or work in a larger grouping of modules directed at some goal.

The basic WebCom module is defined as a cohesive block of code,or collaborative element, that may

be added or removed from WebCom to provide or support additional functionality. The module concept is a

design construct for the aggregation of code, but one convenient for developers of WebCom features.

The interface to optional modules is reasonable straightforward to state, contrasting with the difficult

interactions in core modules. The optional modules possessbarrier interfaces, facilitating a exploitation of

plugability. The goal, although difficult, should be to facilitate similar levels of plugabilityin core modules.

The module everywhere notion that this suggests is a very flexible circumstance. For example, the ability

to treat modules uniformly helps in the development of user tools such as the SysTray application, a back-

ground GUI widget providing access to WebCom. By virtue of module proliferation, this application is little

more than a GUI module loader tool, itself a module, with WebCom features being made available also via the

module loader. The implementation of this application, discussed later, as a module itself leads to a variety

of convenient launching scenarios.

§38 Ringfence Core Machine. ≪Discussion of the use of the Module API to promote a leaner core WebCom implementation≫

A lightweight view of optional modules is a helpful softwareorganisational tool, but not one limited just to

the implementation of additional functionality. There aremany core features which could be managed by

this approach. These include for instance, logging, class loading, state server and client, database operations,

etc. These functions can be implemented conveniently via the use of optional noncore modules and such

implementation has a desirable trimming effect on the core code base.

In addition to not strictly fundamental functions within the WebCom core, there has also been a ten-

dency to implement new WebCom features by augmenting this code. This is a destabilizing behaviour which

55

4.1 Module API

should be discouraged within the WebCom design. Applying new features within the WebCom core degrades

integrity and cohesion, confuses core documentation and isoftentimes unnecessary.

In practice, however, there hasn’t always been a workable alternative available. The Module API aims to

plug this gap with optional noncore modules.4 The Module API and purely plugin view of WebCom offers a

safer, cleaner and more robust means to implement WebCom extensions. Additional, nonbasic functionality

can be provided by means of new modules.

Internal modules need to be pared to the bone and set in stone,for design, maintain

The core modules should only include the barest minimum functionality, sufficient to arrange graph re-

ductions only. This includes the backplane support, the connection manager, scheduler, load balancer and

fault tolerance modules, together with an engine module implementing the basic WebCom operations, with

each of these elements striped of unnecessary functionality. The security manager, is typically implemented

via a blank interface, and so is not a concern in core bloat minimisation.

Typically, what is imagined to be core is not really. For instance, the transmission of class descriptions to

peers is not properly a core operation. If peers do not have the required classes to implement an operation, that

operation will be returned to the originator via other WebCom channels. But the current core implementation

of a class server and client structure presents drawbacks. For instance, it is not straightforward to remove the

class serving facility. Although it may be configured not to run, it still represents a separate initialisation and

configuration step that would be better served within the framework of a module. Then if the site administrator

does not require the class server, the whole module need not be loaded.

The configuration of somewhat primitive functionality may be managed by site administrators using the

plugable nature of WebCom configuration in a simple and even dynamic manner. This dynamism is currently

not available with the present configuration schemes and models a longer execution cycle view of WebCom.

The present configuration mechanism is oriented toward one-shot WebCom executions mostly, whereas a

more dynamic loader scheme supports a pervasive, always available WebCom operation.

Most support considered core currently may not be so, and maybe suitable for optional module imple-

mentation. There is great benefit in forbidding unnecessarycore module changes and the promotion of a

module-everywhere approach is a step in this direction. For, a solid alternative modular design is clearly a

better place to implement functionality. That said, it cannot also be denied that there are occasions when the

core modules are the correct place to make changes.

Core modules are not special. They should ideally be programmed in exactly the same manner as op-

tional modules, modulo the load discrepancy. So, while muchcore module interaction is current done by

direct method invocations on supporting modules, they might be better served using methods available in the

Module API, to be described presently. These facilities arealready available to the core modules anyway,

and the modules may as well leverage these generic access hooks rather than use direct references.

Historically, core modules have depended greatly on the backplane interface, which in many ways, has

been used to refer to the particular running WebCom instance. The Module API includes a newAPI class

to play this role, and avoids problems in using the backplaneas both machine identifier and implementation.

56

4.1 Module API

This is not a major concern, until the presence of two backplanes within a single WebCom machine is consid-

ered. Although this is not a currently permitted configuration, there is little technical reason why this should

be the case. There are interesting WebCom topologies implementable via the use of backplanes, since back-

planes themselves are also modules and so may be plugged intoother backplanes. This could conceivably be

used to implement module chainings and hierarchies in structural rather than policy based approaches.

Using the Module API within the core modules might also help with internals documentation. It would, at

least, help determine border protocols within core module interfaces, since such border interactions would be

via the Module API. It may be that a core version of the API is needed. Some of the core module interactions

are coupled tightly, something which should not be apparentto public users of the Module API, and which

may be hidden within a protected core Module API.

The core modules will always be core, though, regardless of whether they use the API. Their interfaces

denote required functionality which the Module API helps decouple from module implementation.

§39 Module Loader. ≪Notes regarding the load and configuration processes for modules≫

The use of the Module API in WebCom configuration has already been mentioned to some extent. This and

the notion of swappable or dynamic modules are the points to note with regard to module loading procedures.

The Module API sets out a definite mechanism for loading and unloading modules. Previously, it had

been acceptable to manage this in ad hoc fashion, since the view of modules was more limited. Module load

and unload semantics is an essential key in promoting WebComas a module-everywhere architecture.

The load mechanism is straightforward. Modules are loaded automatically at the WebCom bootstrap stage

if specified in a particular configuration file. Additional modules may be loaded later from within WebCom by

any element with access to anAPI reference, i.e., via proper procedure within the Module API. Modules are

constructed using a no-argument constructor for historical reasons, but are offered an initialisation callback

once they have been attached to their target backplane and before any further WebCom configuration.

The unloading process is similar. Modules are unloaded at WebCom destruction, or as specified by

Module API actions. In order to preserve internal state, there are currently restrictions on unloading core

modules, but optional modules are always detachable. Modules are offered a chance to perform specific

unload operations, or to softly refuse unloading. However,the Module API man be instructed to force an

unload if necessary, the module being offered notification of this also, but no right of refusal. The mechanism

will then ignore any further module resistance.

The loading and unloading is more significant than the actualmechanism, and may be used to replace

currently loaded modules, or to add modules required for specific operations. There is potential to manage

module dependencies, indeed there is an initialInfo object structure to support future work on this.5

This initial approach may be improved, particularly in regard to unload semantics. For instance, in-transit

messages referencing an unloaded module lose an endpoint. Such messages may be dropped, rather than left

outstanding, so as waiting modules may be notified of the termination in the peer message endpoint.

As noted earlier, swappable modules mean that basic WebCom configurations may be created and left

operational. User desired functionality can be dynamically incorporated as required by the WebCom operator.

57

4.1 Module API

In particular, there is good means to run WebCom as a background task in an interactive desktop. This

background WebCom may service WebCom operations from a range of sources, the user, other applications,

network peers, the operating system. Such an operation modeis a step toward a WebCom operating system

implementation. Later examples in this chapter demonstrate that this operation mode is practical, and at

illustrate how WebCom might evolve toward an operating system implementation.

A wider range of optional modules means a wider range of functionality and configuration options

within WebCom. The loader mechanism provides for the seamless incorporation of both core behaviour

and lightweight functionality. To the enduser, this can manifest as rich versatility in the WebCom application.

4.1.2 Design

The section takes described the various classes in the Module API, aimed at illustrating the module writing

process. It begins by considering theModule superclass which modules must implement, and describes

communication mechanisms available to module writers. TheAPI class and components are then outlined,

illustrating the action and query facilities available to module writers. There is a final section describing the

module load and unload procedures.

§40 Module. ≪Description of the facilities present via theModule interface and available to third party module writers≫

Module writers have access to a number of Module API resources to perform communications and actions.

In regards communications, the previously discussed EventAPI describes means by which internal elements

of WebCom may communicate with user written modules and share event information.

While third party modules cannot augment the set of events, there is existing support to provide an Ob-

server pattern within user written modules. Each subclass of Module, the basic abstract interface for all

modules, is prefitted with event dispatch and listener list maintenance features. Implementing an additional

heavyweight event system from a module is a matter of subscribing to particular methods and interfaces.

The other main communication mechanism available to modulewriters, and the only one which facilitates

intermachine communication, involves WebCom message passing. Subclass ofModule are required to im-

plement a callback to handle messages destined for that module. These messages are sent via theActionAPI,

discussed presently, and are formatted asMessage subclasses. Actual data content and interpretation is left

to the discretion of the module writer. So, module writers wishing to pass messages to separate machines,

may implement a newMessage subclass to use with the builtin message passing routines.

Messages are addressed by means ofAddress classes. This class provides a specification for destination

machines by either internal socket reference or by Internetaddresses. The target module is currently specified

by module classname, although this is under review and may change in the future. The important core

modules may be directly references using certain constants, so it is not necessary to know the specific core

module implementation in order to address it.

TheModuleInfo classes provide module metadata, and are named conforming to a naming structure so

the system can automatically find metainformation for particular modules. TheModuleInfo for a particular

58

4.1 Module API

<<Abstract>>

Module
Interface for WebCom modules

-api: API

Reference to WebCom system and facilities
-eventListenerTypes: Vector

List of EventListenerType objects defining module events and interfaces.
-listeners: Hashtable

Listeners for module events

+processMessage(in m:Message): void

Process a WebCom message sent to this Module
+Module()

No arg constructor for reflection
+getAPI(): API const

Get the currently assigned API context
+load(in api:API): void

Called after module loading for module specific initialisation
+unload(in api:API): boolean

Called to indicate module is to be unloaded
+setAPI(in api:API): void

Used internally to assign API objects
#assignedAPI(in api:API): void

Interface method to extend in order to perform module specific actions on a setAPI call.
+registerEvent(in eventName:String,in interfaceName:String,in methodName:String,in mask:int): void

Register a new Module event
+addListener(in event:Class,in listener:EventListener): void

Add a new event listener to list
+addListener(in eventClassName:String,in listener:EventListener): void

Add a new event listener to list
+removeListener(in listener:EventListener): void

Remove a listener
+dispatchEvent(in event:RGEvent): void

Dispatch a new event to interested listeners

RGEvent
WebCom Module event interface

-mask: int

Mask to enable subevent types
-consumed: boolean

A handled flag
+source: Module

The Module source for this event

+RGEvent(in mask:int,in source:Module)

Constructor
+getMask(): int const

Get the event mask
+getModule(): Module const

Get the event source
+consume(): void

Mark the event handled
+isConsumed(): boolean const

Check if event is consumed already

Backplane ConnectionManagerModule EngineModule FaultToleranceModule LoadBalancingModule SecurityModule

Message
Message class interface

-source: Address

Message source
-destination: Address

Message destination
-timeSent: Date

Timestamp
-data: Serializable

Message body
-type: int

Subclass specific typing

+Module(in source:Address,in destination:Address,in type:int,in data:Serializable)

Constructor
+getSource(): Address const

Get the Module source
+getDestination(): Address const

Get the Module destination
+getType(): int const

Get the Message type
+getData(): Serializable const

Get the message body
+getTimeSent(): Date const

Get the timestamp

BackplaneMessage ConManMessage EngineMessage FaultToleranceMessage LoadBalancingMessage SecurityMessage

Address

+TOP_LEVEL: String

+ENGINE: String

+LOAD_BALANCER: String

+FAULT_TOLERANCE: String

+CONNECTION_MANAGER: String

+SECURITY_MANAGER: String

+SCHEDULER: String

+BACKPLANE: String

-inetAddress: InetAddress

-descriptor: InetDescriptor

-module: String

+Address(in inetAddress:InetAddress,in module:String)

+Address(in inetDescriptor:InetDescriptor,
 in module:String)

+getModule(): String const

+getInetAddress(): InetAddress const

+getInetDescriptor(): InetDescriptor const

Figure 25: UML Diagram Module APIModules andMessages.

59

4.1 Module API

<<Abstract>>

Module

Backplane ConnectionManagerModule EngineModule FaultToleranceModule LoadBalancingModule SecurityModule

ModuleInfo
Module Metadata Class

+name: String

Display name for Module
+desc: String

Display description for Module
+deps: String[]

Array of Module dependancies

+ModuleInfo()

No arg constructor for reflection
+getName(): String const

Get display name for Module
+getDescription(): String const

Get display description for Module
+getModuleDependencies(): String[] const

Get Module dependancies

BackplaneModuleInfo ConnectionManagerModuleInfo EngineModuleInfo FaultToleranceModuleInfo LoadBalancingModuleInfo SecurityModuleInfo

Figure 26: UML Diagram Module APIModuleInfo.

module should be contained in the class with the original module name suffixed withModuleInfo. So, if

metadata is required for moduleBlah, the system expects to find it in theBlahModuleInfo class.6 The

ModuleInfo class provides metadata hooks forModule display names and descriptions, together with an

currently unsupported list of module dependencies.

Module writers must subclassModule and implement their basic module elements. This class is loaded

automatically, or on demand, and subject to the specific loadactions described below. The load call provide

hooks for module initialisation, event registration and other preparation work. If the module is to use message

based communications, the write should prepare a custom subclass ofMessage, and implement the module

processMessage method to process these messages. The message routing is handled automatically. If in-

terested in internal WebCom events, the module must register with theEventAPIManager as in the previous

chapter. If it wishes to provide interested parties with access to heavyweight events generated within the mod-

ule, there must also be some initialisation and registration code, together with dispatch code at the relevant

points. Module writers should also implement aModuleInfo class to provide module metainformation.

Figure 25 diagrams the basicModule andMessage interfaces. Figure 26 illustratesModuleInfo.

§41 API Class. ≪Queries and operations available to third party module writers≫

All modules have access to anAPI object, via theirgetAPImethods. ThisAPI class represents the WebCom

machine instance, modules getting theAPI referring to the WebCom machine onto which they are loaded. In

particular, this means a module may only be loaded on one WebCom instance within a JVM.7

60

4.1 Module API

API
WebCom Machine Reference

-backplane: Backplane

Reference to backplane
-information: InformationAPI

Reference to query interface
-action: ActionAPI

Reference to operation interface
-heap: Map

Persistent memory storage

+API(in backplane:Backplane)

Constructor
+newWebCom(): API

Make a new WebCom instance
+registerListener(in listener:EventAPIListener): void

Register an Event API listener
+deregisterListener(in listener:EventAPIListener): void

Deregister an Event API listener
+getInformationAPI(): InformationAPI const

Get the information interface
+getActionAPI(): ActionAPI const

Get the operation interface
+mallocModuleMemory(in module:Module): Map

Allocate persistent memory for a module
+freeModuleMemory(in module:Module,in mem:Map): boolean

Free module memory
+registerModuleMemory(in module:Module,in mem:Map): void

Register existing memory with the heap
+deregisterModuleMemory(in module:Module,in mem:Map): void

Deregister existing module memory
+equals(in anAPI:Object): boolean

Test equality of API references
+hashcode(): int

Get an API hashcode

InformationAPI
Query interface for API

-api: API

+getAPI(): API const

Get parent API object
+getModuleAddress(in module:Module): Address const

Get the Address for the indicated Module
+getRemoteModuleAddress(in address:InetAddress,in classname:String): Address const

Get Address for Module on remote machine
+getLoadedModules(): String[] const

Get list of loaded modules
+getModule(in moduleName:String): Module const

Get reference to indicated module
+isModuleLoaded(in moduleName:String): boolean const

Return true if indicated module is loaded
+isCoreModule(in classname:String): boolean const

Is the indicated module a loaded core module
+dynamicTopologyEnabled(): boolean const

Return true if redirecting enabled
+getExecutableNodeQueueSize(): int const

Get the size of the executable node queue
+engineRunning(): boolean const

Return true if engine is started
+getListeningPort(): int const

Get WebCom port
+getLocalHost(): InetAddress const

Get localhost details
+getParentAddress(): InetAddress const

Get parent details
+getClientAddresses(): InetAddress[] const

Get client details
+getAuthorisedClient(in clients:InetAddress[],in instr:Instruction): Object const

Get an authorized client for the given instruction
+getAuthorisedList(in clients:InetAddress[],in instr:Instruction): InetAddress[] const

Get list of authorized clients for instruction
+isAuthorised(in client:InetAddress,in instr:Instruction): boolean const

Is given client authorized for instruction?
+isAuthorised(in client:InetAddress,in msg:Message): boolean const

Is client authorized for message?
+isAuthorised(in client:InetAddress,in rst:Result): boolean const

Is client authorized for result
+getClientDescriptorsFromAddresses(in clients:InetAddress[]): Vector const

Get internal socket references

ActionAPI
Operation interface for API

-api: API

Reference to parent API

+getAPI(): API const

Get parent API
+sendMessage(in msg:Message): void

Send a message
+connectTo(in address:InetAddress): boolean

Connect to remote WebCom

+connectTo(in address:InetAddress,in portNum:int): boolean

Connect to remote WebCom
+queueInstruction(in instr:Instruction): void

Queue a WebCom instruction
+loadModule(in classname:String): Module

Load a new Module
+unloadModule(in classname:String,in force:boolean): boolean

Unload a module

+logWarning(in s:String): void

Log a warning message
+logSevere(in s:String): void

Log a severe message
+log(in s:String): void

Log a message

+logException(in e:Exception): void

Log an Exception message
+logFatalException(in e:Exception): void

Log a fatal exception
+logFine(in s:String): void

Log a fine grained message

Figure 27: UML Diagram Module API.

61

4.1 Module API

TheAPI class, illustrated in Figure 27, serves as a placeholder reference for the WebCom machine, and

provides access to resources and operations on that machine. The API class may be used, instead of the

EventAPIManager, to register and deregister for Event API events, and is probably more convenient.

Modules may avail of a persistent memory store, which existsso long as theAPI does, persisting across

module loads and unloads, but not currently across WebCom instances. Modules may requestMap storage

objects, or registerMaps of currently referenced objects. TheAPImaintains a handle onMap objects indepen-

dently of the module, and they may be reclaimed by modules following a reload, if desired.

TheAPI also includes a static method for constructing new WebCom instances. Third party applications

wishing to use WebCom as an implementation architecture, can use this method to start and maintain a

reference on a WebCom instance. Messages can be sent to this WebCom to perform application work.

TheAPI class contains references to anInformationAPI and anActionAPI object, respectively, the

query and operation interfaces for the represented WebCom machine. The query interface provides access to

machine data, whereas the operation interface provides methods to effect changes in machine state.

The InformationAPI provides a number of query methods, providing security authorisation, mod-

ule addressing, module referencing, and some minor configuration details. It is intended to expand the

InformationAPI as necessary to support desired query requests from third party modules. As such, this

is an early specification, likely to evolve to meet developerrequirements. TheInformationAPI methods

are implemented via direct calls to existing core module operations and module writers are advised to use the

InformationAPI rather than internal methods, for robustness. Internal interfaces are subject to change and

the indirection level provided by theInformationAPI is useful.

TheActionAPI provides operation methods, dealing with WebCom connections, module loading, and

logging messages. Send messages is also done via theActionAPI, as previously noted. As with the

InformationAPI, theActionAPI is intended to evolve to meet module writer requirements.

Together, theInformationAPI and theActionAPI classes should provide all the facilities and informa-

tion required by module writers. Their ability to meet this goal will be improved based on user feedback and

feature requests. At present, many of the core modules do notemploy theInformationAPI andActionAPI

classes and it is hoped to improve these these legacy implementations during their next refactoring.8

§42 Module Loading Mechanism. ≪Details on the module loading process≫

The Module API includes a new system for loading and unloading modules, extending the older system to

support callbacks during loading and to support module unloading. There are also extensions to the module

configuration files to support automatic loading of third party or user modules.

The module lifecycle begins at loading. Modules may be loaded automatically when the WebCom is

created, or loaded explicitly via use of theActionAPI.loadModule call. To be loaded automatically, a

module must be listed in the WebCommodules.properties file. This file contains lines listing the required

core modules, those which must be present for the WebCom to run, and an optional listing of third party

modules to load at runtime. Either load mechanism has the same result in the case of user modules.

62

4.1 Module API

Core modules are loaded in a slightly differently from user modules, mostly for legacy compatibility

reasons. The only noticeable difference is that a set of core modules must be acquired and loaded beforeany

third party modules are given an opportunity to load. The load procedure is pretty much the same for core

and user modules, with some additional configuration and addressing matters in the case of core modules.

Only third party module loading will be considered below.

To load a module, the named class is instantiated via a reflective Class.forName call. Any failures

are logged and successfully returnedObject references are cast toModule. TheAPI reference field of this

Module is then set to the current WebComAPI and the moduleloadmethod invoked to complete the loading.

Note that WebComAPI objects are not available to module constructors. Hence, the module writer is

given a chance to perform initialisation dependent on aAPI reference in theload method. Within thisload

method, it can be presumed that the API reference is set and can be acquired via thegetAPI method.

Initialisation not requiring the API should be done from within the constructor. This includes regular

application configuration, and WebCom specific actions likeregisteringEventAPIListeners. API specific

module initialisation needs to be done from within theloadmodule method. The initialisation, API assigna-

tion andload method invocation order is the specification and is guaranteed.

Modules are unloaded by explicit calls to theActionAPI.unload methods or at machine termination,

and involve anunload method call on the module targeted. Unload operations are either soft, meaning a

module programmer can can explicitly refuse to comply, or hard, meaning the module programmer’s prefer-

ence is ignored. Module compliance is indicated in theunload method return value.

§43 Note on Module Addressing. ≪Remarks regarding current module addressing limitations≫

Currently module addressing is based on module classnames Specific modules can be requested from the

InformationAPI indexed by desired classname. Module names are unique, being classnames, but there is

a concern that multiple modules of the same core module type may be required. Core modules are not class-

name addressed for legacy reasons, instead being directly referenced by module type, e.g., SchedulerModule.

A problem arises if, say, two different connection managers are desired. This is not possiblecurrently

for addressing reasons. It is intended to tackle this problem via the use of composite modules when and if

the circumstance arises. A composite module is a wrapper module facilitating multiple child modules of an

identical type to be loaded. Composite modules would also handle addressing for these child module, perhaps

by separate message headers in theMessage type.9

Message routing addressing is similarly done depending on the class of theMessage object received. The

classname of theMessage type associated with a particular module must that of the module with “Message”

appended. So,BlahModule would have to be associated with message classBlahModuleMessage for the

inbuilt API messaging to deliver messages.

Specific message classes are desirable because they force module writers to explicitly detail permitted

message types. This enforced message specification is useful documentation. Of course, strictness is usu-

ally circumvented slightly by including a catch all messagetype USER MESSAGE to facilitate later module

extension and message augmentation.10

63

4.2 Example Modules Employing the Module API Architecture

4.2 Example Modules Employing the Module API Architecture

4.2.1 Statistics Module

The statistics module was the first module to exploit the Event API architecture, and was written mostly to

demonstrate Module API structures. In this respect, although strictly unnecessary, it utilises aspect based

events, messages and the heavyweight module messages. The module code itself being fundamentally

straightforward, is nevertheless overcomplicated by the demonstrative nature.

The statistics module began as instrumentation code in the original WebCom implementation, increment-

ing counters at specific points in the WebCom code. Although,this code was later removed, it formed an

ideal application for the aspect based Event API and was reintroduced in a module form.

The statistics modules collects statistics generated frominternal WebCom actions. These statistics are not

especially interesting in themselves, including items such as the number of generated and executed instruc-

tions, the number of messages sent and received, and so forth.

While the statistic module’s main use is as an example for module writers, it does also have real use

within the WebCom applications. When loaded and enabled, themodule collects statistics for provision to

other modules, and for the IDE tool upon completion of graph executions.

§44 Module Operation. ≪Run through of Statistic Module operation≫

The statistics module extends the statistics framework to support the exchange of statistical data with remote

WebComs. Suppose client wants to acquire statistical information from a Statistics Module on a remote

WebCom, for which it somehow has anAddress. The client calls therequestRemoteStats on the local

StatsModule and busy pollsgetStats for a returned result. Instead of busy polling, the client may instead

be informed of result notifications by use of Module API heavyweight events. The client would need to

implement theStatsEventListener interface and register with theStatsModule, in this case.

TherequestRemoteStats method sends aStatsMessage.REQUEST message to the remote WebCom

StatsModule. This module acquires the localStats object, which maintains the current statistics for that

machine, and extracts a Memento of the state.11 This memento is returned, in aStatsMessage.REPLY

message, to the original WebCom where a newStats object is constructed from the memento details. This

Stats object is incomplete, not having a handle to the rightAPI, but suffices nevertheless.

TheStatsMessage.CLEAR message can be used to reset the cumulative statistics on theremote Web-

Com. A StatsMessage.CLEAR is acknowledged by aStatsMessage.REPLY even though the memento

indicates zero state. This saves on a separateCLEAR ACK message to update the local WebCom state.

Note the statistics module is almost completely blind to WebCom internals, knowing only how to ex-

change WebCom messages. The statistics collection is done using the Event APIStatsEventAPIListener

class which is more or less ignorant of the WebCom internals.

Although clunky, this draft module is useful in illustrating the three major communication tools available

to module writers, namely the message system, the event system, and aspect pointcut hooks.

64

4.2 Example Modules Employing the Module API Architecture

Module

StatsModule
Statistics generation module

-listeners: StatsEventAPIListener

Heavyweight eventlisteners
-stats: Map

(Address, Stats) pairings.

+StatsModule()

Constructor. Registers events
#assignedAPI(in api:API): void

Start statistics generation for api
+load(in api:API): void

Load module
+processMessage(in m:Message): void

Handle StatsMessages
+requestRemoteStats(in address:Address): void

Request stats from remote machine
+requestClearRemoteStats(in address:Address): void

Clear remote statistics
+getStats(in address:Address): Stats const

Get statistics for given address if available

ModuleInfo

StatsModuleInfo
Module information for StatsModule

Message

StatsMessage
Message class for statistic messages

+REQUEST: int

Type sentinal
+REPLY: int

Type Sentinal
+CLEAR: int

Type Sentinal
+USER_EXTENSION: int

Type sentinal

<<Interface>>

StatsEventListener
EventListener for heavyweight module events

+handleStatistics(in event:StatsEvent): void

Handle statistics event

StatsEvent
Event object for heavyweight module events

-address: Address

Event source
+statistics: Stats

Statistical information for event

+StatsEvent(in module:Module,in address:Address,in statistics:Stats)

Constructor
+getAddress(): Address const

Get event source
+getStatistics(): Stats const

Get event statistics

RGEvent

EventListener

Stats
Statistics storage class

StatsEventAPIListener
Listener interface for WebCom Event API

Figure 28: UML Diagram Statistics Module Part I.

§45 Implementation. ≪Outline implementation of the statistics module≫

Figures 28 and 29 illustrate theStatsModule software. Most of the module framework constructions are

detailed in Figure 28. There is an uninterestingModuleInfo class for theStatsModule, and a standard

Message subclass indicating the supported message types as seen in the earlier walkthrough:

• StatsMessage.REQUEST to request a remote machine forward statistics.

• StatsMessage.REPLY to return previously requested machine statistics, or to speculatively load re-

mote caches with current statistical information. Also serves an acknowledgment role in the protocol.

• StatsMessage.CLEAR to request a remote machine reset its statistical information.

The StatsEventListener interface andStatsEvent class comprise a basic heavyweight module event

setup.StatsEvent notifies interested parties that new statistical information has been received from a remote

WebCom. So, clients can register asStatsEventListeners and not bother to busy poll thegetStats call.

The other detailed class in Figure 28 isStatsModule, a pretty basic module even though it does ex-

ploit the three available communication techniques. It illustrates the convenience of the Module API that

a fully featured module may be implemented with such little code. StatsModule simply registers the

65

4.2 Example Modules Employing the Module API Architecture

StatsEventAPIListener
Listener interface for WebCom Event API

+newInstructionInEngineModule(in api:API,in instr:Instruction): void

Increment Stats Count
+newInstructionInWebCom(in api:API,in instr:Instruction): void

Increment Stats Count
+instructionExecutionInEngineModule(in api:API,in instr:Instruction): void

Increment Stats Count
+instructionReceived(in api:API,in instr:Instruction): void

Increment Stats Count
+instructionTransmitted(in api:API,in instr:Instruction,in desc:Descriptor): void

Increment Stats Count
+resultReceived(in api:API,in rst:Result): void

Increment Stats Count
+backplaneSentMessage(in api:API,in msg:Message): void

Increment Stats Count
+engineResultSent(in api:API,in rst:Result): void

Increment Stats Count
+conmanRedirectTo(in api:API,in source:Address,in target:InetAddress): void

Increment Stats Count

Stats
Statistics storage class

-NUM_MESSAGES_RECEIVED: String

-NUM_MESSAGES_SENT: String

-NUM_INSTRUCTIONS_GENERATED: String

-NUM_INSTRUCTIONS_EXECUTED: String

-NUM_INSTRUCTIONS_RECEIVED: String

-NUM_INSTRUCTIONS_TRANSMITTED: String

-NUM_RESULTS_RECEIVED: String

-NUM_RESULTS_SENT: String

-NUM_REDIRECTIONS: String

Map sentinals
-numMessagesReceived: int

-numMessagesSent: int

-numInstructionsGenerated: int

-numInstructionsExecuted: int

-numInstructionsReceived: int

-numInstructionsTransmitted: int

-numResultsReceived: int

-numResultsSent: int

-numRedirections: int

Statistic counters
-statsMap: Map

 Map between APIs and their statistics stores.
-api: API

The API this object manages statistics for

+Stats(in api:API)

Constructor
+getAPI(): API const

Get API for these statistics
+getStats(in api:API): Stats const

Get Stats for given API
+getMemento(): Serializable const

Memento access method
+setMemento(in memento:Serializable): void

Set state via Memento
+reset(): void

Reset statistics
+getNumMessagesReceived(): int const

Get counter contents
+incrementNumMessagesReceived(): void

Increment counter
+getNumMessagesSent(): int const

+incrementNumMessagesSent(): void

+getNumInstructionsGenerated(): int const

+incrementNumInstructionsGenerated(): void

+getNumInstructionsExecuted(): int const

+incrementNumInstructionsExecuted(): void

+getNumResultsReceived(): int const

+incrementNumResultsReceived(): void

+getNumInstructionsReceived(): int const

+incrementNumInstructionsReceived(): void

+getNumInstructionsTransmitted(): int const

+incrementNumInstructionsTransmitted(): void

+getNumResultsSent(): int const

+incrementNumResultsSent(): void

+getNumRedirections(): int const

+incrementNumRedirections(): void

Figure 29: UML Diagram Statistics Module Part II.

StatsEventAPIListener and heavyweight events before just waiting for messages to arrive. These mes-

sages are processed according to the sketch protocol outlined above. All thats all, save for some sleight of

hand regarding the incorporation of newAPI objects into the statistics scheme upon discovery.

Figure 29 details the software elements which perform the real statistics generation work. TheStats

class is the main data store for statistical information, providing anAPI toStats hashtable mapping, enabling

the multi-API part of the problem to be compartmentalised. TheStats class also details statistics, counter

increments, queries, resets and summary generations for anindividualAPI. TheStats class also partakes in

the Memento pattern externalising its state in an object safe manner.

The individual statistics in theStats class are updated byStatsEventAPIListener, an Event API

subclass. This class responds to the internal WebCom eventscorresponding to events of statistical interest,

66

4.2 Example Modules Employing the Module API Architecture

and forwards increments to the relevantStats object. So, when an event occurs in a particularAPI, thisAPI

is used to acquire the correctStats object which is appropriately updated.

This module is perhaps the most complicated example here. The next examples are all of a trivial pro-

gramming nature, yet achieve valuable software functions and interesting interface support. This ease and

power of application confirms a key role for the Module API within future WebCom design.

§46 Future Extensions. ≪Further directions forStatsModule development≫

There are many interesting directions in which the statistics module might be extended, the most immediate

being expanding the range of statistics generated. In addition, the module would benefit from the inclusion of

methods to perform basic statistical analyses. This might involve retaining a long run memory of statistical

values, and using this history to estimate quantities, suchas mean queue length, mean time to instruction, etc.

This information would be of use in the scheduler and load balancer modules.

The limited interface to remote WebComs is a second glaring omission in the current statistics module. It

would be advantageous to reduce message acknowledgment package sizes when not required, and to imple-

ment more finegrained reset and query operations on remote WebComs. These changes could be coupled with

a more fully featured module interface providing statistical information on neighbourhoods in the WebCom

connection tree. This would be of benefit to fault tolerance and load balancing decisions.

In respects, the statistics module is a primitive Information Manager Module, an in-progress plan to

produce systems to manage and organise all kinds of WebCom metamachine data. The statistics module

scratches the surface of one Information Manager feature, that of local statistics acquisition, and forms an

Information Manager Module prototype case study, demonstrating the ease of statistics collection.

4.2.2 SysTray, IDE Bridge and Other GUI Modules

The idea of graphical modules is another interesting moduledevelopment. These modules contain or present

graphical elements for user interaction. The idea of an interactive module is the simple, but key development,

since to date, modules have been user independent, requiring minimal configuration.

The IDE is the first immediate graphical component in consideration of graphical element modularisation,

and there are streamlining advantages in implementing the IDE as a module. In the first place, it removes the

current division between IDE GUI frontend and WebCom backend. Whilst, this division might be desirable,

it is very much a traditional WebCom application operation,i.e., where WebCom is invoked separately to

achieve some computation for the container application. This need not be the only interaction model.

Implementing the IDE in module form and attaching directly to a WebCom instance backplane might have

benefits, including access to WebCom information via the Module API, rather than by message passing.12

Additional modules may then independently extend the IDE using the Module API.

Moreover, the work in modularising the IDE is not significant, although there are careful choices to

be weighted. There has been keen support for maintaining standalone IDE operation, and for ensuring a

67

4.2 Example Modules Employing the Module API Architecture

decoupling of the IDE from any particular running WebCom instance is always possible. Methods addressing

these concerns will be seen shortly.

§47 IDE Module and Bridge. ≪Particulars regarding the IDE Module implementation≫

The use in an IDE module recasting is that rather than having the IDE start WebCom, it might be done the

other way. WebCom could start an IDE. An advantage here is that the IDE could be started identically to

WebCom save with a different configuration file. Also, other modules would be able tocreate an IDE for the

user. So, for instance, a safety module tracking a graph execution might create an IDE on encountering type

or security errors. The user could then edit the graph and resubmit it via the newly loaded IDE.

A particular problem with the current IDE is determining locked computations, and access to the Event

API might help in establishing computation liveness. Presently there is little indication of WebCom progress

when the IDE runs a graph. With the Event API, there is scope toprovide visual cue updates on core events,

making it possible for users to determine if a machine is stalled or just engaged in a long computation stream.

If a WebCom instance were always available during IDE operation, a graph could be started by simply

sending aTOP LEVEL message to theBackplane via anActionAPI.sendMessage method invocation.

Implementing the IDE as a module does not13 involve much effort and initially would not offer any module

functionality. So, in particular, messages would be ignored. Themain method of the IDE would be retained

for launching the IDE, but would instead make a WebCom and load the IDE onto it as a module.14

Binding the IDE to the module architecture caused initial concern. However, implementation in module

form does not preclude separate operation outside the WebCom context, and especially so in applications, like

the IDE, which have low coupling with the WebCom core architecture. Implementing the module interface

just means other loaded WebCom components can make use of it.

Writing code conforming to the Module API, does not necessarily bind that code to the WebCom core.

In the IDE module case, there is fundamentally no coupling between the IDE and WebCom, other than

preexisting work execution calls. The WebCom core is still unaware of the IDE aside from a result call

direction. This is no different to the current configuration.

Given the reservations regarding tight module coupling, the IDE module was implemented as a loose

bridge module instead of directly. Essentially, this involved leaving the existing IDE code in a standalone

executable state, and implementing a wrapper module to invoke the IDE when loaded and destroy it when

unloaded. This achieves the functionality of a direct IDE module, but at arms length, and while not optimal,

is sufficient for developing and arranging GUI module coordinationin an integrated tool.

§48 SysTray. ≪Using modules to implement a WebCom desktop system as a looseconfederation of collaborating applications≫

With this rework, it is possible to run WebCom as a desktop service and to dynamically load and unload

modules via a system tray tool. This dynamic load feature enables a range of interesting user to WebCom

interactions. For instance, say a graph execution goes awry, then the user might dynamically load a debugger

or replayer module onto the running WebCom and debug the graph in situ.

68

4.2 Example Modules Employing the Module API Architecture

Implementing the IDE using the Module interface directly, or via a helper module, means it could be

easily loaded by this tray application. This WebCom SysTraytool need be little more than a WebCom

instance wrapped with a GUI runtime module loader. In fact, the module loader and unloader features are not

actually essential, since they may themselves be implemented in a module, albeit one which must be loaded

at startup if the user wishes to change loaded module configurations.

The sum total of basic SysTray tool requirements in this design is to wrap a WebCom in generic GUI

code for creating a SysTray icon and responding to menu clicks. This may not be extremely functional, but

achieves the target of putting WebCom on the user desktop.

Clearly, additional features are required to make this SysTray application of any use. So, the SysTray

requires a extension mechanism, but the Module API is a suitable mechanism already available within Web-

Com. Desired SysTray features may be implemented as WebCom modules and either loaded by the bootstrap

configuration, which launches the SysTray-WebCom combination, or by the user as required.

In this way, lots of desirable design and programming advantages are leveraged directly from the Module

API design right into the SysTray application. SysTray automatically benefits from component uniformity,

high degrees of flexibility, short widget development time,robustness to WebCom modification and good

isolated design. The tray application leverages the entiremodule architecture for ease of extensibility, and in

fact, once implemented, the core SysTray icon code need not be reconsidered ever. Being so straightforward,

it highly possible to implement it robustly and correctly the first time.

The problem of dynamically loading and unloading modules involves little more than an interface to

loader methods in theActionAPI andInformationAPI classes, to which all modules have access. So, any

module may be used to implement this dynamic loading and unloading of modules, and in the SysTray case,

it is convenient to implement this loader as a GUI module to facilitate user interaction.

Further, users could use the SysTray to directly load IDE instances, since just loading the IDE module

bridge in the dynamic loader will kick start an IDE instance.This pattern generalises though, which makes it

exciting. Log viewer modules, trace replayer modules, information and statistics viewer modules, debugger

modules, etc. may all be implemented in this manner. Moreover, because they are written to the Module API

interface, the modules require very little knowledge of SysTray internals.

A version of the SysTray application has been implemented according to this design, written using the

SWT widget toolkit, and so should be available on any platformwith an SWT implementation, including

most popular desktop systems.15 This current SysTray application includes graphical load and unload, IDE

bridge, parent connection dialogue, and log viewer modules. These already provide quite a fully featured

WebCom desktop environment, but would benefit from more module implementations, such as a debugger,

fully featured statistics viewer, etc.

69

4.2 Example Modules Employing the Module API Architecture

4.2.3 BeanShell

BeanShell is a Java scripting tool, providing a commandlineinterface programmable with Java syntax. Bean-

Shell, like Jython, is a popular Java style scripting framework which may be embedded within user applica-

tions, providing developers with scripting access to objects within a running application.

WebCom already incorporates the BeanShell tool as support for certain scripting library nodes. Security

notwithstanding, the use of BeanShell within WebCom could be beneficial. Developers could employ its

versatile syntax to debugging task, or use it to extend WebCom to meet unforeseen and otherwise difficult to

fix problems. Scripting could be used to “glue” existing WebCom software into more powerful tools.

But, debugging is the use of most primary interest, especially within the Module API context. A basic

BeanShell bridge module provides some nice user interaction possibilities. Suppose a WebCom execution

freezes, then a developer might load a BeanShellModule ontoan otherwise frozen WebCom and use this

interface to examine WebCom state, perhaps via availableInformationAPI objects.

In addition, the BeanShell tool also comes with a graphical version. The implemented module bridge

leverages this graphical BeanShell prompt into a WebCom module, available for use within all WebCom

tools. Most especially, this BeanShell is available for usewithin the SysTray application, so forming another

quick SysTray extension tool, and emphasising the small tool organisation of SysTray. SysTray users can

load theBeanShellModule, via a convenience menu link, and examine internals of the running WebCom.

So, with little expenditure of effort, the WebCom desktop tool already has an available console tool.

BeanShell may promote a more serious WebCom scripting system, the basics of which are already in

place, being the Module API and BeanShell support. The provision of a medium sized library of useful

WebCom BeanShell scripts might be helpful to developers. Scripts could be bundled to dump WebCom state,

clear instruction queues, launch graphs, etc. and would complement the BeanShell application significantly.

Finally, note that the BeanShell interface may also be used remotely, and could facilitate a remote Web-

Com debugging shell. However, there are serious security concerns to address first.

4.2.4 Future Directions

Before leaving the topic of the Module API, it is instructiveto consider some future work and applications in

the area of module design. Only some brief sketch details of some proposals will be mentioned here.

§49 Core WebCom Modules. ≪Use of the Module API within the WebCom core architecture≫

The first concern is a matter of WebCom internals. Within the WebCom core design, there is much functional-

ity which might be componentised using the Module API. Asidefrom the previously discussed core modules,

there are other classes working to achieve particular purposes within the WebCom machine. Isolating and

factoring these roles would add additional configurabilityto a more decoupled internal architecture.

For example, within the WebCom core are classes dedicated tofacilitating the exchange ofClass items

between peer WebCom machines. This is arranged in a server-client architecture and intended to support

cases where one WebCom sends another WebCom work which that WebCom cannot complete. A common

70

4.2 Example Modules Employing the Module API Architecture

failure in completing work is an absence of critical classesfrom the peer WebCom. To this end, the class

server and client structure was designed to deliverClass descriptions to WebCom JVMs requiring them.

This functionality could be easily factored as a separate module, and would allow site administrators fine-

grained levels of configuration options in deciding whetherto permit such class sharing. Further, factorising

such reflection dependent code helps in the task of porting WebCom to embedded architectures, which may

not possess these reflection capabilities. In this case, thereflection dependent code can just be dropped.

The class loader is not the only example of modularisable code within the WebCom code. Others include,

maintaining logging support, and usingWorkReceiverModules asad hocconnection managers.

§50 API Module. ≪Sketch of API exchange module≫

Without considering security, it is interesting to consider facilitating API object calls on remote WebCom

objects. For instance, a local WebCom might maintain a reference to aRemoteAPI object, subclassed from

API, where methods are implemented to involve transferring requests to a remote WebCom before execution.

The implementation of this scheme might involving backing the RemoteAPI class with the use of an

APIModule, and using the message passing system to exchange call details. Naturally, the method call and

parameters would have to be marshelled properly within anAPIModuleMessage class, and concern would

have to be directed toward handling instances of missing local references.16

Missing local references in the parameters is less of a problem on the calling side, as certain strict but

manageable restrictions would avoid this problem arising.The issue of missing references is a bigger problem

for returned results. For the most part,API query calls return primitives, but some instances require special

measures, such as with local socket referencing. These measures may involve separating theAPI interfaces

into remote-safe and local-safe categories.

It is worth noting the implementation strategy employed in this design, since it forms a very common

module application pattern. Some available software object, in this case theRemoteAPI, is implemented to

delegate its methods to a backing module. This backing module then performs necessary operations, perhaps

involving the Module API, to achieve certain goals and results which are relayed to the original method.

§51 API Extension Support. ≪Augmentation of module interfaces≫

It is essential at some future point for the API classes to provide extension points, in order that user modules

may extend the API with new functionality. This models the Eclipse scenario where modules or plugins have

exposed extension points and it is necessary to emulate thiswithin the WebCom API design also.

Consider the case of the statistics module, where it might beuseful to expose the operations for requesting

remote statistics, for instance. However, there is presently no way for the statistics module to advertise this

functionality to other modules. Currently, the best that can be done is for modules to request a list of loaded

modules from theInformationAPI and to individually examine the class interface of each in turn. This does

not indicate any especially helpful metadata to the querying classes, however, and really ought to be replaced

by a superior scheme.

71

Chapter Notes

In fact, a COM-style interface support might be a step in the right direction, provided this interface clearly

exposes and documents offered module methods. Similarly, this interface should alsooffer the particular

extension points within the module to outside parties. Thus, to extend the core API or the API of a particular

module, the developer implements a certain interface and applies it at the exposed extension point.

Chapter Notes
1In particular objects comprising the Backplane were suitable to represent a single WebCom instance.
2This addressing, introduced as a workaround, is suboptimal.However, there hasn’t been pressing need yet for an update.
3This could also be called a modular architecture, but within WebCom the module terminology already has specific meaning. Hence,

the term plugin is used to discuss WebCom components even if these components are likely to be actual WebCom modules.
4Although the modules are called noncore, this does not mean that functions provided are not core, in some sense. The term core

refers to the very basic code, necessary for WebCom to achieve graph reductions and peer collaboration.
5A developingModuleInfo specification deals with module dependencies. The current draft includes dependency notations, but not

automatic dependency resolution, or dependency cycle avoidance structures.
6If the module already contains the suffix Module, this can be excised before consideration in this naming scheme. So, the

ModuleInfo for SecurityModule can be found inSecurityModuleInfo instead ofSecurityModuleModuleInfo.
7This restriction is easily remedied, if so necessary.
8This update must consider which core module methods are used to implement the methods in theInformationAPI andActionAPI

classes, of course. But otherwise, core modules should employAPI classes to the fullest extent.
9If a composite module is ever written then it will likely dictate the addressing specification in cases of multiple core modules.

10It used to be the case that some of the modules sent plainMessage objects as messages. This was refactored because it obscured

the content of the messages. The additional tagging is also helpful in debugging.
11Yes. The design could just makeStats serialisable, but the Memento pattern is sharper OO, maintaining encapsulation.
12The IDE talks to a child WebCom instance by forwarding a work message to it, and registering for an result notification. The

WebCom is otherwise an entirely separate entity from the IDE.
13Did not, rather. A module version of the IDE was prepared as a prototype before the final bridge module architecture was decided

on. The programming effort involved in producing this prototype was minimal.
14Actually it would have to load a new IDE onto the WebCom, but doing this first causes no harm.
15It isn’t possible to have a completely portable system tray application in Java. The “Write Once, Run Anywhere” Java motto ends

upon contact with the modern graphical user interface. As such, the SysTray tool is only fully supported on the Windows platform.
16A first approach requiresAPImethods parameters to be serialisable. Although, this works,more refined solutions are possible.

72

5
Logic Programming in WebCom

I n addition to incorporating Aspect Oriented Programming techniques, producing type checking capabil-

ities in WebCom also involves introducing elements of the Logic Programming paradigm into WebCom.

There is a convenient representation of the type checking primitive actions in terms of logic expres-

sion resolution. For this reason, and because it has practical applications in other WebCom development, a

resolution engine was incorporated into the WebCom code base.

This chapter examines this resolution engine and its implementation, including the formulation of basic

type checking operations in first order predicate logic. This logic engine forms the final component needed

to implement type checking support within WebCom, the topicof the following and final chapter.

Implementing a logic engine from scratch is not excessivelydifficult, being almost entirely an engineering

task. And, while existing Prolog engines could easily have been incorporated, a new resolution engine im-

plementation provided opportunities to finesse the software artifact design and to simplify its adoption within

third party WebCom applications. That is, a template structure could be designed supporting straightforward

access to logical data and operations thereon from within third party modules, or elsewhere within WebCom.

This logic programming harness primarily facilitates basic type checker validation calculations. How-

ever, with general application the resolver supports the theme of extending current WebCom programming

methodologies. It complements available OO and AOP with possibilities for logic programming design.

There is also no reason why resolver facilities need not be available to graph designers, via logic com-

putation nodes. Although, outside the scope of the work here, it is possible to conceive of a set of WebCom

73

5.1 Resolver

operations enabling a graph designer to describe, parse andresolve graph level logic programs.

In any case, logic programming features are a valuable addition to the WebCom software, as will be seen

in the implementation work for the type checker modules in the next chapter.

5.1 Resolver

The resolver engine is key in implementing logic programming within WebCom, and involves producing

software objects to represent logic data elements, and to implement unification and resolution algorithms.

§52 Resolver Components. ≪Description of the portions of the Resolver architecture, and the approach to implementation≫

There is particular concern in the correct logic data element design, i.e., the representation of logical structures

like atoms, literals, clauses, and functions. Developers should be presented with terms appropriate to their

application. For instance, in the type checker design, it ismore convenient to deal with elements like types,

conjunctions of types, disjunctions of types, as well as a subtype inclusion relation. The developer will

recognise helpfully named dual software elements such asSubtype rather than unqualified mathematical

terms like literal, clause, etc. This allows developers to ignore logic programming somewhat and instead

represent relations between real artifacts.1

Aside from logic element representation, there are the two key algorithms required, unification and res-

olution. The implementation of these algorithms within extensible frameworks, particularly in the case of

resolution, is helpful for later extension. These customisations do not typically concern logic programming

endusers, unless they wish to apply extra domain knowledge to improve unification and resolution efficiency.

5.1.1 Logic Elements

Describing the logic engine must begin with basic object representation, a UML sketch of which is shown in

Figure 30. These elements will be discussed in turn below. Knowledge of First Order Predicate Logic(FOPL)

is helpful, but is not the real point here, so rather than discuss interpretations too much, the logic elements

will be presented operationally. Just presume the set of items upon which the logic will work. What these

elements are does not matter,2 just that they are given.

§53 Basic Logic Representation. ≪The classes describing the logic elements required for FOPLimplementation≫

It is easiest to begin with theConstant class which represents logical constants in the FOPL system. These

are the nouns of the modeled system, and are little more than identified items, a fact mirrored in the essentially

blank programming implementations thereof, consisting ofa constructor and a visitor callback only. An

example constant might be a specific type in the type checker system, for instance.

Logic constants are special cases of logic functions. A function is an identifier with a set number of

subterms, which maps these subterms to a specific item in the modeled system. Constants are functions with

no subterms, so always mapping to the same item in the modeledsystem, i.e., constants are nullary functions.

74

5.1 Resolver

Function
Function symbol representation

-name: String

-terms: Term[]

Function places

#Function(in name:String,in arity:int)

#Function(in name:String)

#Function(in name:String,in term:Term)

#Function(in name:String,in term1:Term,in term2:Term)

Constructors
+getName(): String const

+getArity(): int const

+getTerm(in i:int): Term const

#setTerm(in i:int,in term:Term): void

Subclass access to change terms
+visit(in visitor:Visitor): void

Visit double dispatch call hook
+create(in terms:Term[]): Function

Hook for further subclass typing

Variable
Variable representation

-identifier: String

Unique identifer for variable

+Variable()

+Variable(in identifier:String)

Constructor
+getIdentifier(): String const

+visit(in visitor:Visitor): void

Visit double dispatch call hook

Constant
Nullary Function

+Constant(in name:String)

Constructor
+visit(in visitor:Visitor): void

Visit double dispatch call hook

Clause
Representation for logic clauses

-comparator: Comparator

Logic expression comparator
-literals: List

Full list of literals in clause
-positive: List

The positive literals in the clause
-negative: List

The negative literals in the clause

+Clause(in literal:Literal)

+Clause(in literals:Collection)

Constructors
+isHornClause(): boolean const

+getNumLiterals(): int const

+getLiterals(): List const

Get all literals
+getPositiveLiterals(): List const

+getNegativeLiterals(): List const

+visit(in visitor:Visitor): void

Visit double dispatch call hook

Term
Abtract base class for term logic items

+visit(in visitor:Visitor): void

Visit double dispatch call hook

Literal
Representation for logic literals

-name: String

Literal symbol
-positive: boolean

Flag indicating literal sign
-terms: Term[]

Function places

#Literal(in name:String,in positive:boolean,in numTerms:int)

#Literal(in name:String,in postive:boolean)

#Literal(in name:String,in positive:boolean,in term:Term)

#Literal(in name:String,in positive:boolean,in term1:Term,in term2:Term)

Constructors
+getName(): String const

+isPositive(): boolean const

#setPositive(): void

#setNegative(): void

+isNegative(): boolean const

+getNumTerms(): int const

+getTerm(in i:int): Term const

#setTerm(in i:int,in term:Term): void

Subclass access to change terms
+negate(): void

Get negative version of literal
+visit(in visitor:Visitor): void

Visit double dispatch call hook
+create(in pos:boolean,in terms:Term[]): Literal

Hook for further subclass typing
<<Interface>>

Visitor
Visitor Pattern for logic elements

+visitConstant(in constant:Constant): void

+visitVariable(in variable:Variable): void

+visitFunction(in function:Function): void

+visitLiteral(in literal:Literal): void

+visitClause(in clause:Clause): void

VisitorAdaptor

-map: Map

Tree walker work space

+getOutput(in term:Term): Object const

#setOutput(in term:Term,in object:Object): void

+getOutput(in literal:Literal): Object const

#setOutput(in literal:Literal,in object:Object): void

+getOutput(in clause:Clause): Object const

#setOutput(in clause:Clause,in object:Object): void

Accessors and mutators for internal map
+visitConstant(in constant:Constant): void

+visitVariable(in variable:Variable): void

+visitFunction(in function:Function): void

+visitLiteral(in literal:Literal): void

+visitClause(in clause:Clause): void

Blank implementation DFS walk

Figure 30: UML Diagram Logic Datastructures.

75

5.1 Resolver

An example type system functions might be a function to combine types into aggregate union types, or to

represent all but a specific argument type.

Functions are represented by theFunction class, and consist of a function name identifier, together with

a list of subterms underneath the function symbol. TheFunction class includes operations to manipulate

these subterms, to implement double dispatch callback, andto facilitate more specific typing in subclasses.

Subterm items, the elements that functions operate on, are just variables and other functions. A logic vari-

able can take the place of any definite logic term expression.Within the software, variables are represented

by theVariable class, and are simple placeholders with identifier names.

Term objects themselves are not realised directly within the system, only variables or concrete functions

are actually used. However, the term entity has placeholderfunctions, represented by theTerm software

counterpart, a blank abstract base class with just visitor callback specification.

TheTerm composite tree forms the fundamental logic element. The tworemaining logic elements, literals

and clauses, are compositions ofTerms andLiterals respectively. TheLiteral class represents logic

literals, either positive or negative predicates. A predicate, like a function, consists of an identifier and a set

number of subterms. But unlike functions, predicates map the subterms to a Boolean representing the logical

validity of the predicate.3 An example type checking literal might be a subtype containment relationship.

The final logic type is also little more than a basic containerobject, albeit one with an important role in

unification and resolution. A clause is a group of literals, logically conjoined implicitly, so mapping into a

natural Boolean valuation. The simple dataClause class represents clauses.

§54 Logic Class Use. ≪Logic representation use in custom applications, and considerations of the Visitor pattern≫

These logic classes are intended to be subclassed in practice. In particular, an application designer using

the WebCom logic programming facilities must first decide ontheir desired logic. And given, the constants,

functions and predicates of this logic,4 they subclass corresponding logic representation classesto match.

For example, take the typing logic, described in detail later in this chapter. While naming constants in

this case is not overly helpful, it is helpful to subclassFunction with the particular functions including set

conjunctive, disjunctive, and negation operations. Theseare respectively subclassed inAnd, Or, andNot.

Set conjunctive, disjunctive, and negation should not really be presented in logical terminology as they are

here. There are reasons, doing with how developers read and interpret type strings, for using the class names

And, Or, andNot. But this doesn’t relate to the actual set based typing semantics. Consequently, this use of

logic terminology for set operations may be confusing. Simply thinking of set conjunction, disjunction, and

negation, as set intersection, union, and complement, respectively will fix any confusion.

Aside from source code clarity, there is a parsing value in using subclasses to represent logic elements.

Automatic parser generation tools can produce parsers to generate and populate expression trees consisting

of specialised subclass logic items. Specialised subclasses explicitly document the mapping between the data

representations used in automatic parsing and those used elsewhere in the software application.

Before concluding with logic representation, it is worth noting the Visitor pattern for the logic represen-

tation classes. As in the earlier software designs, a Visitor pattern is available to developers. In this case, the

76

5.1 Resolver

default Visitor adaptor incorporates an automatic depth first search through the logic expression tree. This

adaptor also provides a map attribute field, into which adaptor implementations may deposit objects on a per

term basic. So while walking an expression tree, adaptors can easily build up complicated result objects.

The main Visitor pattern application is as a logic expression comparison tester. ThisLogicComparator

class is an important within the unifier and resolution algorithms and is implemented by depth first search in

the adaptor. This testing is for deep equality but uses object reference equality for primitive logic elements,

meaning especially that variables are not equal if they are distinct objects. This is bad since actual variables

themselves are not important, but rather their structure and arrangement within an expression tree.

However, testing for equality modulo variable instances can be done via the unifier. That is, two clauses

are tested by unifying them and checking if the unifier substitutions just match variables to other variables.

This corresponds to an ignorable simple variable relabeling.

5.1.2 Unifier Code

Unification is a key element in any resolver, and a description thereof is essential in discussing resolution or

logic programing. This section, included for completeness, will briefly cover the basic unification algorithm.

Unification, of course, is a algorithm for matching two FOPL expressions, providing the substitutions, or

unifier, which result in the same expression when applied to both expressions. Unifiers do not always exist

for FOPL expression, but if one does exist, then there is a unique most general unifier for those expression.

§55 Unification Algorithm. ≪Brief review of the unification algorithm≫

The unification algorithm, takes two FOPL literals,l andm, and returns their most general unifier, if the

expressions are unifiable. Unification works by consideringcorresponding terms froml andm in turn, and

matching them according to some basic unification rules. Suppose the algorithm is unifying termst ands:

• If t is a variable, the substitutiont → s is first applied to the current most general unifier, then added to

it. If instead,s is a variable, then the substitutions→ t is used.

• Else, if s and t have the same function symbol and arity, then the subterms are added to the current

goal list for the unifier. So,t1 = s1, t2 = s2, . . . , also need to be unified for the unification ofs andt

to succeed. The substitutions required for these unifications are combined in the most general unifier.

Note this also includes the case of constants, which are justnullary functions. So for constants to

match, they must have the same symbol, i.e., be the same constant.

A comprehensive outline of the pseudocode for this algorithm may be found in Appendix C.

§56 Unification implementation. ≪Brief notes on the software implementation of the unification algorithm≫

Figure 31 illustrates the unifier software UML. The approachis deliberate overkill in order to support the use

of optional occurs checking and custom unifier software.

77

5.1 Resolver

Unifier
Template class for unifiers

+getVariables(in clause:Clause): Set const

+getVariables(in term:Term): Set const

Get list of variables from term
+unify(in t:Term,in s:Term,in theta:Substitution): Substitution

+unify(in t:Term,in s:Term): Substitution

Unify terms
+unify(in l:Literal,in m:Literal,in theta:Substitution): Substitution

+unify(in l:Literal,in m:Literal): Substitution

Unify literals
+unifyComplimentary(in l:Literal,in m:Literal): Substitution

Unify literals as a complementary pair
+revariablise(in clause:Clause): Substitution

Revariablise a clause

NoOccursCheckUnifier
Checkless unifier

#bindVariable(in v:Variable,in t:Term,in theta:Substitution,
 in goals:Stack): void

Bind a variable
-processGoal(in goals:Stack,in theta:Substitution): boolean

Tackle next goal for unifier
+unify(in t:Term,in s:Term,in theta:Substitution): Substitution

Implementation of unifier template method

OccursCheckUnifier
Checking unifier

+occursCheck(in v:Variable,in t:Term): void

Do an occurs check
#bindVariable(in v:Variable,in t:Term,in theta:Substitution,
 in goals:Stack): void

Reimplementation of variable binding

<<RuntimeException>>

OccursCheckFailureException

<<RuntimeException>>

DuplicateSubstitutionException

<<Interface>>

Visitor
Visitor Pattern for logic elements

VisitorAdaptor

VariablesListVisitor
Generate lists of variables

+variables(): Set

Get stored variables list
+reset(): void

Reset variables list
+visitVariable(in variable:Variable): void

+getVariablePartitions(): Set[]

Get equivalence classes modulo variable identifier

Substitutor
Make variable substitutions

-substitution: Substitution

The substitution to apply

+substitute(in term:Term,in subst:Substitution): Term

+substitute(in literal:Literal,in subst:Substitution): Literal

+substitute(in clause:Clause,in subst:Substitution): Clause

+sub(in term:Term,in subst:Substitution): Term

+sub(in literal:Literal,in subst:Substitution): Literal

+sub(in clause:Clause,in subst:Substitution): Clause

Perform various substitutions
+visitConstant(in constant:Constant): void

+visitVariable(in variable:Variable): void

+visitFunction(in function:Function): void

+visitLiteral(in literal:Literal): void

+visitClause(in clause:Clause): void

Reimplementations to perform substitutions

Goal
Data class for unifier goals

-lhs: Term

Lefthand side of goal
-rhs: Term

Righthand side of goal

+Goal(in lhs:Term,in rhs:Term)

+getLhs(): Term const

+getRhs(): Term const

+apply(in s:Substitution): void

Apply substitution to goal

Substitution
Data class for substitutions

-subs: Map

Primitive substitutions

+Substitution()

+Substitution(in var:Variable,in term:Term)

Constructors
+getSubstitutionVariables(): Set const

-setSubstitution(in var:Variable,in term:Term): void

Add a substitution
+getSubstitution(in var:Variable): Term const

+hasSubstitution(in var:Variable): boolean const

-containsSubstitution(in var:Variable,in term:Term): boolean const

#compose(in var:Variable,in term:Term): void

Compose with new substitution
+compose(in subst:Substitution): void

+shallowCopy(): Substitution

+trim(clause:Clause): Substitution

Figure 31: UML Diagram Unifier Code.

The user instantiates whichever concrete Unifier subclass preferred, and invokes theunify method with

theLiterals to unify. ASubstitution object is returned containing the most general unifier substitutions,

ornull if the unification failed. Implementation-wise, the unification arrangement is handled by theUnifier

base class, with term unification being done by a templated subclass method.NoOccursCheckUnifier

implements a no-frills unification which is extended with occurs checking in theOccursCheckUnifier.

Note that applying a substitution makes use of the earlier discussed Visitor pattern. Also worth noting is

that the resolver architecture, described below, is independent of unifier choice. So, for instance, a choice to

use occurs checking in the resolver may easily be changed.

5.1.3 Resolver Engine

Resolution is a process for determining whether a certain clausal logic expression may be derived from a

base set of other clausal logic expressions. The mechanics of resolution require negating the query clause

and identifying a logical contradiction, thus proving the original query. Resolution proceeds by resolving

complementary clauses to produce smaller clauses, and iterating toward the empty clause which denotes a

desired contradiction. Resolution is a search problem which many clause combination strategies.

Logic programming is organised by the resolver engine, building on unifier and logic representations, to

arrange the specification and execution of rule based logic programs, by resolution tree search.

78

5.1 Resolver

With this engine, WebCom and third party developers can encode logic programs as software objects and

query the inbuilt resolver to compute logic facts. So, with ahandcrafted or parsed logic program object, the

developer may query whether certain facts are derivable from this program or not.

The resolution engine architecture is designed to allow theincorporation of different resolution strategies.

There is scope for the specification of candidate resolventsat each step of the resolution tree, which may

be used to implement resolution strategies solely dependent on resolvent selections, e.g., input resolution,

SLD resolution, etc. Also possible are resolvers which incorporate historical search information into next

resolvent selections. However, local selection of next resolvents is the only mechanism for effecting the

resolution algorithm, although this local knowledge may feedforward to later selections.

The discussion of resolver architecture begins by considering a limitation of the implementation before

moving to the examination of logic program representations, and the identification of candidate resolvents or

complementary clauses. The base resolution itself will then be covered, including an implementation of SLD

resolution, before concluding by looking at resolution tree state management.

§57 WebCom Resolver Limitation. ≪The restriction of resolution queries to single literals, and overcoming this drawback≫

The actual resolver implementation is limited to single logic literal fact checks. It cannot check the validity

of arbitrary clauses, since these may have more than one literal. This single literal restriction is both an

implementation convenience and runtime efficiency, since multiliteral clauses may give rise to multiple clause

query negations which would make resolution less efficient.

Whether this is a severe restriction is debatable. With single literal queries, all the predicate relations in

the logic may be directly tested. Practical applications ofthe logic engine typically involve the construction

of reduction style rule bases, or rewrite productions, and user applications are typically only interested in

knowing definitive information, i.e., testing a single predicate with particular values.

However, this restriction does mean predicate implications cannot be directly tested. So, it is not immedi-

ately possible to test if a particular predicate value implies a certain other predicate value. This concern can

be handled in many ways, the simplest being a hypothesis based approach. That is, the antecedent expression

is assumed in the rule base and the consequent fact is tested as a single literal query. Alternatively, propo-

sitional calculus rules may be coded within the FOPL logic inuse. So, for instance, predicates for logical

conjunction, disjunction, negation, and implication are added,5 together with appropriate derivation rules.6

§58 Logic Program Representation. ≪Rule bases representations≫

For the purposes of resolution, it must be convenient to dealwith sets ofClause objects, the largest logical

expression units within the software. To this end, the software contains a basic collection type for clause

objects, theClauses class. The use of clause aggregation for logic program representation is examined here.

A logic program may be represented as a set of clauses, an within the WebCom resolver architecture, there

is no special need for the logic program software representation to be anything other than a list of clauses

forming the backing rules or knowledge base. The triggeringof actual computation is left the client code,

which issues single literal queries against the backing rule base.

79

5.1 Resolver

<<Interface>>

RuleFactory
Logic rule storage. Logic program.

+getAllRules(in query:Clause): Clauses const

Get the logic rules required for argument

CompositeRuleFactory
Aggregate RuleFactories

-factories: Set

The constituent RuleFactories
-clauses: Set

List of clauses to always include in sets

+addRuleFactory(in factory:RuleFactory): void

+addClause(in clause:Clause): void

+getAllRules(in query:Clause): Clauses const

Return relevent clauses for argument resolution

Clauses
Clause management

-clauses: Set

Clauses to aggregate

+Clauses()

+Clauses(in clause:Clause)

+Clauses(in clauses:Collection)

Constructors
+getClauses(): Set const

+add(in clause:Clause): void

+add(in clauses:Clauses): void

+getIterator(): Iterator const

+getNumClauses(): int const

+getComplementaryClauses(in clause:Clause,
 in unifier:Unifier): Iterator const

+getComplementaryClauses(in clause:Clause,
 in literal:Literal,
 in unifier:Unifier): Iterator const

Get complementary clauses for argument

Clause

ComplementaryClauses
Store complementary clause data

-positiveClause: Clause

-positiveLiteral: Literal

-negativeClause: Clause

-negativeLiteral

-unifier: Substitution

The most general unifier

+ComplementaryClauses(in positiveClause:Clause,
 in positiveLiteral:Literal,
 in negativeClause:clause,
 in negativeLiteral:Literal,
 in unifier:Substitution)

Constructor
+getPositiveClause(): Clause const

+getPositiveLiteral(): Literal const

+getNegativeClause(): Clause const

+getNegativeLiteral(): Literal const

+getUnifier(): Substitution const

+resolve(): Clause

Resolve clauses together

Figure 32: UML Diagram Logic Program Representation.

Logic programs may be represented asClauses objects, this clause aggregation playing a fundamental

container role. However, it is far more convenient to represent rule bases encapsulated within objects, which

must then be asked for clauses relevant to a particular rule base query. Instead of a list of clauses, program

representation is by factory objects returning lists of clauses particular given query resolutions.

Such a result list may, in fact, be a full list of rule base clauses, and as such, the relevance query view also

encompasses the basic list view of logic rule bases. The two views do not coincide, since asking for relevant

clauses introduces additional possibilities in terms of rule schemata and large rule base representation.

This view is dictated by theRuleFactory interface, consisting of the singlegetAllRules(Clause)

method for establishing clauses necessary for a query. The existing library includes a concrete implementa-

tion of this interface, theCompositeRuleFactory class. This is a simple container forClauses objects,

facilitating both the basic list logic program representation, and a composition facility.

In addition to rule lists and single rule representations,CompositeRuleFactory facilitates the composi-

tion of RuleFactory objects. TheCompositeRuleFactory contains fields for specifying rule lists always

required for queries, and so always returned by thegetAllRules method. But also included are fields for

RuleFactory objects. These subfactories are queried for required rulesas part of anygetAllRules calls,

and thus filter up required rules as per standard Composite pattern application.

§59 Complementary Clause Identification. ≪A consideration of complementary clause identification≫

Turning to the question of complementary clause generation, a task performed almost exclusively within the

80

5.1 Resolver

Clauses class. This operation involves a scan of the full clauses list, at each step of which is nested a two list

complete pairwise element examination, and so at very least, comprising a somewhat quadratic order cost.7

There is scope forClauses reimplementation to optimise complementary clause identification.

A complementary clause pair is a pair of clauses sharing a unifiable literal, positive in one of the clauses,

negative in the order. Resolution, the critical part of the resolution process, is the elimination of this literal.

The establishment of these resolution candidates is exactly the complementary clause identification task.

In terms of resolution operation, it is best to check a particular clause against all clauses in aClauses

object, effectively a chunk of the fact base. This check should determine all complementary pairs involving

the test clause and any clause from theClauses aggregation. To do this, each test clause literal is considered

in turn against each literal from each clause within theClauses object. On determining a potential comple-

mentary literal, i.e., one of the same function symbol and opposite sign, a unification is attempted to reconcile

the subterms. A successful unification indicates a complementary pair.

Complementary pairs are represented byComplementaryPair objects, data classes maintaining the pos-

itive and negative literals and their containing clauses. Areference to the unifier substitution is also kept,

since this unifier is applied on the resolvents during the resolution process.

It is critical for the resolver code to implement some indexing, hashing, or structured data storage to

improve on this näıve complementary pair generation scheme. Any indexing, byliteral symbol for instance,

is a one time cost which is easily repaid since clauses and literals are repeatedly examined during the checking

process. Since each clause in the rule base for a particular query might potentially be examined at every

resolution step, the complementary clause lookup should beheavily optimised.

§60 Resolution. ≪The resolution algorithm boilerplate≫

The resolver algorithm process begins with a particular clause, one of the available initial clauses in the

rule base, or perhaps the negated query clause. A step is madein the resolution process by resolving a

complementary pair referencing the current clause, so eliminating a literal, but also potentially introducing a

number of new literals. The goal is to resolve out the entire clause.

Because there is choice in the initial clause selection, andin the complementary pair selection at each

step, there is a tree of possible resolution paths. The job ofthe resolver is to search this resolution tree for a

path producing a contradiction or empty clause, thus validating the query clause.

In the basic approach, any complementary pair may be resolved at any time to extend the set of clauses

available for forming complementary pairs. In practice, such unrestricted free search is hopelessly inefficient,

giving rise to slimmed search strategies of various effectiveness. These strategies typically reduce the choice

available at each resolution step, thus pruning the search tree. Strategies vary in the amount of choice they

permit, and in the expressiveness of the queries and rules bases on which they are accurate.

The basic common selection reductions might involve requiring half of any complementary pair to be the

negated query or a descendant, or requiring half of any complementary pair chosen to be in the initial set of

clauses. Other search pruning include matching on the negated literals in Horn clauses only, for instance.

81

5.1 Resolver

<<Abstract>>

Resolver
Resolver Implementation Basecase

-rules: Clauses

The logic program
-queryNeg: Clause

The fact to refute
-unifier: Unifier

Unifier to use in resolution
-queryQueue: ResolverStateQueue

In state queue
-visited: ResolverStateVisitedList

Out state queue
-refutation: ResolverState

The current candidate refutation state

+Resolver(in query:Clause,in rules:RuleFactory,
 in unifier:Unifier)

Constructor
+getRules(): Clauses const

Get logic program
-markVisited(in state:ResolverState): void

-isVisited(in state:ResolverState): boolean

-resolve(in query:Clause,in complement:ComplementaryClauses): Clause

Perform clause resolution
-negate(in clause:Clause): Clause const

Negate clause literals
+getResolvents(in query:Clause,in unifier:Unifier): Iterator const

Get candidate resolvents from resolver implementation
+refute(): ResolverState

Generic refutation algorithm
+processResolvent(in state:ResolverState): List const

Do a resolution step
+hasNext(): boolean const

Is there another refutation?
+next(): Object const

Get next refutation

Iterator

SLDResolver
Implement SLD Resolution

+SLDResolver(in clause:Clause,in rules:RuleFactory,
 in unifier:Unifier)

Constructor
+getResolvents(in query:Clause,in unifier:Unifier): Iterator const

Implement template method for SLD resolvents

ResolverState
Step in the resolution tree

-current: Clause

Current clause of resolution tree
-substitution: Substitution

Current resolution substitution
-parent: ResolverState

Parent in the resolution tree
-metric: int

Hashing convenience
-signature: String

Hashing convenience

+ResolverState(in current:Clause,in substitution:Substitution,
 in parent:ResolverState)

Constructor
+getParent(): ResolverState const

+getCurrent(): Clause const

+getSubstitution(): Substitution const

+getMetric(): int const

+getSignature(): String const

+isRefutation(): boolean const

Is this state a refutation state?

Figure 33: UML Diagram Logic Resolution.

Within the WebCom resolver engine, naı̈ve search is implemented, together with an option to specify the

set of permitted complementary pairs. In this way, different search minimization strategies may be expressed

in a uniform architecture. So, although developers may apply optimizations in terms of search minimization,

they cannot apply other efficiencies particular to the search implementation. This is not a handicap, in that

effective optimization of search bound tasks primarily involves minimising the search tree.

The resolver search implementation is orchestrated from theResolver class, or from a concrete realisa-

tion of this class. Resolver state consists of the current clause to resolve, a substitution involved in getting to

this clause, and a link to the parent state. Initially, resolver states representing potential start states, namely

negated query clauses with null substitutions and parents,are pushed on a queue.

At each step of the resolution process, the next state is popped from this state queue and examined. If

this state is a contradiction, i.e., an empty clause, it represents a refutation of the negated query, and thus an

establishment of the required query. The substitution producing this goal state is then reported to the original

client, whereupon further refutations may or may not be requested.

If the state is not a refutation, a list of potential resolvents is collected by querying the concreteResolver

class implementation for permitted resolvents in the current state. This is where the designer has discretion

to curtail the search, an example of which will be illustrated below.

Given a list of permitted resolvents, each resolvent is resolved in turn against the current clause, producing

a potential next state. This next state consists of the resolvent clause, the current substitution composed with

82

5.1 Resolver

the resolvent unifier, and the current state, now taking the role of parent state. Each next state is pushed onto

the resolver state queue. To complete the resolver step, thecurrent state is marked visited and prohibited from

entering the state queue again. The next resolver state is then popped from the state queue for processing.

A long search is an unavoidable possibility, and representative of general AI search difficulties. However

termination may result from an early isolated refutation, rather than ultimate search tree exhaustion.8

Note theResolver class may be customized with the user’s choice of unifier. So,either of the unifiers

from previous discussion, or any custom unifier implementation, may be used in the resolution process unifi-

cations. With careful specification, it may even be possibleto mix and match unifiers if required. In this case,

the efficientNoOccursCheckUnifier may be used for common unification tasks where speed is essential,

saving the more inefficientOccursCheckUnifier for less common verification use perhaps.

§61 SLD Resolution. ≪Outline of default resolution strategy and exampleResolver implementations≫

As mentioned, different resolution strategies are made possible by implementations of theResolver class

template method. One such implementation, the default resolver for type checking applications, is in the

SLDResolver class, an implementation of Selected Linear Definite (SLD) resolution.

In SLD resolution, the permitted resolvents are those involving negative literals from the query clause.

That is, one half of each resolvent pair must be a negative literal in the query clause. This significantly prunes

the search tree, especially if the query clause is small and has few negative literals.

The SLD resolution implementation requires theSLDResolver class to extendResolver. The method

of interest is the concrete realisation ofgetResolvents, one of only two methods in theSLDResolver class

due to extensive templating, the other method being a constructor. ThegetResolvents method extracts

negative literals from the query, or current clause, and returns any complementary pairs in the rule base.

SLD resolution is a tradeoff between efficiency and application, in that large portions of the searchtree

are pruned but the resolution is only guaranteed to return the correct result is used on Horne clauses. This is

not a severe restriction in reality, and SLD resolution is a very common resolution strategy. For type checking

purposes , the restriction to Horne clauses is met, and SLD resolution may be satisfactorily applied.

This implementation of SLD resolution is straightforward,as are most other common resolution strate-

gies. These other resolution strategies involve similarlysmallgetResolvent methods, describing the par-

ticular resolvent sets the strategy in question permits.

§62 State List Management. ≪Notes regarding the management of state queues and visited lists≫

Before leaving the discussion of resolver architecture implementation and beginning to consider example

logics, it is examining state management structures in the resolver setup. Resolver state is managed in the

ResolverState object, containing fields for the earlier outlined constituent resolver state elements, namely

the current clause, the substitution to date and the parent state.

ResolverState objects, once constructed, are always pushed onto theResolverStateQueue, a little

disguised FIFO queue class masquerading with a fancy name. OnceResolverState objects have been de-

queued and processed, they are passed to a second managementstructure, theResolverStateVisitedList.

83

5.1 Resolver

ResolverState
Step in the resolution tree

-current: Clause

Current clause of resolution tree
-substitution: Substitution

Current resolution substitution
-parent: ResolverState

Parent in the resolution tree
-metric: int

Hashing convenience
-signature: String

Hashing convenience

+ResolverState(in current:Clause,in sub:Substitution,
 in parent:ResolverState)

Constructor
+getParent(): ResolverState const

+getCurrent(): Clause const

+getSubstitution(): Substitution const

+getMetric(): int const

+getSignature(): String const

+isRefutation(): boolean const

Is this state a refutation state?

ResolverStateQueue
Queue of next ResolverStates

-delegate: List

Backing datastructure

+dequeue(): ResolverState

+isEmpty(): boolean const

+enqueue(in state:ResolverState): void

+enqueueAll(in states:List): void

ResolverStateVisitedList
Out state list

-delegate: HashMap

Backing datastructure

+add(in state:ResolverState): void

+contains(state:ResolverState): boolean

<<Logic Visitor>>

MetricSignatureVisitor
Compute metrics and signatures

+getMetric(): int const

+getSignature(): String const

+visitConstant(in constant:Constant): void

+visitVariable(in variable:Variable): void

+visitFunction(in function:Function): void

+visitLiteral(in literal:Literal): void

+visitClause(in clause:Clause): void

VisitorAdaptor

<<Logic Visitor>>

ConstantsListVisitor

+constants(): List const

+reset(): void

+visitConstant(in constant:Constant): void

Figure 34: UML Diagram State Management.

This is a collection of allResolverStates visited to date in the resolution, maintained to prevent revisiting.

At its most basic, this is a simple map type, with methods to insert new states to check state membership.

Fast insertion and lookup is required in the visited list datastructures, and in this case a hashing implemen-

tation is employed. There are some serious drawbacks in hashing ResolverState objects, the most pressing

being in terms of memory consumption. AResolverState might unfortunately include a substantial quan-

tity of information, and given that large quantities of suchstates might be expected during a refutation search,

there are particular requirements to implement a memory optimised hashing scheme.

It turns out that just storing the clause element is sufficient since the visited list is only used to determine

circularity in the search tree and is never required to produce actualResolverState objects. Any required

state objects are always to hand when needed. For instance, at a refutation point, the current state contains

enough references to track the full refutation.

Furthermore, the actual logic objects are not required either. It is sufficient to produce a unique text

signature for each state clause and containing all requiredinformation. Then, to test membership in the

visited list, it suffices to compute the signature of the query state and use that asindex in the hashtable.

Unique signatures may be computed by walking the logic expression tree and encoding the structure

symbols in abbreviated form. Computation of signatures is done by theMetricSignatureVisitor, a logic

Visitor pattern implementation. The signature itself is formed by marking logic expression elements in prefix

walk order, and encoding the types as characters augmented with specific data. So, for instance, a function

fun is replaced by the string “f(fun)”, a constantconst by “c(const)” and so forth. Such string encodings are

more memory efficient than their counterpart objects, even if slightly longer than absolutely necessary.

Note that variables are represented by “v(varid)” where var id is an integer identifier attributed to

the variable by the signature generation process. In this way, variables which share the same identifier are

the same for signature and hashing purposes. There is, however, the concern of variable substitutions and

84

5.2 Example: Typing Language

relabellings appearing to be different. It is debatable whether an expression with a relabeled variable is the

same as the original expression, especially in the context of a collected substitution.

This is managed in signature generation as follows. Identifiers are assigned incrementally to variables as

they are seen in the visit order. The first variable encountered in visit order receives the identifier 1, the next

receives 2, and so forth. If a variable is reencountered during the walk, it receives the identifier originally

assigned. So, the local structure of variable placements isretained, even if the precise variable instances

are lost. This means two logic expression signatures computed separately will give the same result if the

expressions are equal modulo variable instance or naming.9

In any case, the current implementation depends on signatures for optimisation gain. There is plenty of

garbage reclaim potential during the resolution process. It would be better not to generate the garbage in the

first place, but most state data may be reclaimed with the state is pushed onto the out queue, provided none

of its child states are active. Certainly, a state may be reclaimed on a post order traversal move.

5.2 Example: Typing Language

This section is concerned with the most important example logic, describing a type value expression logic.

This is formulated in terms of type sets and constitutes the type checking application basis. The WebCom

resolver support was initially designed specifically to express these logical type structures.

Basically, the logic expresses possible types as sets of Java classnames from a presumed universal set of

all classnames.10 Furthermore, classname constants may be combined into setsby use of intersection, union

and universal set complement. Together these elements describe the possible types which may be associated

to operator inputs and outputs. There is a single predicate,that of the subtype inclusion relation, really a

subset inclusion relation. This is fundamentally everything required to validate graph type correctness.

§63 Formal Logic. ≪A strict definition of the type logic≫

A more formal description of this basic type logic operationwill be presented here. Begin by defining the

logic Types= (T ,Ω,Π) whereT is the set of possible type values. The set of all valid Java classnames

only forms a strict subset ofT . A proper definition ofT requires an inductive definition, incorporating some

formal symboling business. So, defineT as follows:

• Any Java classname is an element ofT .

• If x ∈ T , then the formal symbol Not(x) is an element ofT .

• Similarly, if x, y ∈ T , then the formal symbols And(x, y) and Or(x, y) are also inT .

And, T is the least set with these properties.11 This means thatT is the set with all Java classes and any

combination involving the function symbols Not, And, and Or. Note these formal symbols are intended to

refer to set complement, set intersection, and set union in astandard interpretation.

85

5.2 Example: Typing Language

The setΩ = {And,Or,Not} is the set of logic functions. Note, these functions are not actually yet defined.

Their earlier use was intended only to be helpful in forming theT set, and did not actually define the objects.

Luckily, the functions are easy to define, given the formal objects defined earlier. The function Not :T → T

sendsx → Not(x). Similarly, And : T × T → T sends (x, y) → And(x, y) and Or :T × T → T sends

(x, y)→ Or(x, y). Charmingly straightforward definitions.12

With the basic set of elements and logical functions done, there remains just the predicate definitions to

finalise the logic syntax. The set of predicates isΠ = {Subtype :T × T → {true, false}}. This single pred-

icate captures the subtyping relation, the semantic definition of which being simplicity itself. The Subtype

predicate is interpreted semantically as the subset relation on the setT , where connectives have been given

interpretations as set operations. However, the syntacticdefinition relation required by the resolver, is more

awkward, consisting of numerous syntactic rules.

But before getting into the nasty business of outlining these syntactic derivation rules, some examples and

implementation notes might be helpful. Example valid logical terms include:

• Or(java.lang.Integer, java.lang.Long, java.lang.Double) — Here any of the types under the

Or function are permitted. Note the shorthand in writing allthe terms under the same function symbol,

rather than cascading Or functions. For convenience, either assuming some preprocessing, or that the

Or, And functions are overloaded in theΩ set to handle arbitrary arities.13

• And(X, java.lang.Byte) — The expresses a class that is aByte and also of the class or interface to

which variableX is bound.

• Not(Or(java.lang.Byte, java.lang.Short)) — Any type butByte andShort.

Implementation-wise, theTypeslogic uses subclasses as directed in the section on logic representation. These

classes, illustrated in Figure 35 are all trivial extensions of their respective parent classes.

§64 Rules. ≪Outline of syntactic rules≫

The Typeslogic syntactic deduction rules are represented in the software byTypeRulesFactory, a sub-

class ofRulesFactory. These are the manipulations valid within the logic, used toproduce derivations.

For implementation purposes, these rules are actually represented in clausal form, but are presented here in

traditional form. TheTypeslogic rules include:

• Commutativity of the And, Or functions in both places under the Subtype predicate:

Subtype(And(x, y), z)→ Subtype(And(y, x), z)

Subtype(z,And(x, y))→ Subtype(z,And(y, x))

Subtype(Or(x, y), z)→ Subtype(Or(y, x), z)

Subtype(z,Or(x, y))→ Subtype(z,Or(y, x))

86

5.2 Example: Typing Language

Function Variable Constant

ClauseTerm Literal

<<Interface>>

Visitor

VisitorAdaptor

And
Class to represent And functions

-AND: String = "And"

Parse token

+And(in term1:Term,in term2:Term)

Constructor
+create(in terms:Term[]): Function const

Factory method

Or
Class to represent Or functions

-Or: String = "Or"

Parse token

+Or(in term1:Term,in term2:Term)

Constructor
+create(in terms:Term[]): Function const

Factory method

Not
Class to represent Not functions

-Not: String = "Not"

Parse token

+Not(in term:Term)

Constructor
+create(in terms:Term[]): Function const

Factory method

Subtype
Class to represent Subtype literals

-Subtype: String = "Subtype"

Parse token

+Subtype(in positive:boolean,in subtype:Term,
 in supertype:Term)

Constructor
+getSubtype(): Term const

+getSupertype(): Term const

+create(in positive:boolean,in terms:Term[]): Function const

Factory method

Original Logic Representation Classes

<<Logic Visitor>>

TypesVisitor
Adapt Visitor to Types nominature

+visitOr(in or:Or): void

+visitAnd(in and:And): void

+visitNot(in not:Not): void

+visitSubtype(in subtype:Subtype): void

+visitFunction(in function:Function): void

+visitLiteral(in literal:Literal): void

Figure 35: UML DiagramTypesImplementation.

• Or commutativity under conjunctive normal form. And commutativity is not needed:

Subtype(And(Or(x, y), z),w)→ Subtype(And(Or(y, x), z),w)

Subtype(w,And(Or(x, y), z))→ Subtype(w,And(Or(y, x), z))

• Associativity of the And, Or functions in both places under the Subtype predicate:

Subtype(And(And(x, y), z),w)→ Subtype(And(x,And(y, z)),w)

Subtype(w,And(And(x, y), z),)→ Subtype(w,And(x,And(y, z)))

Subtype(Or(Or(x, y), z),w)→ Subtype(Or(x,Or(y, z)),w)

Subtype(w,And(Or(x, y), z),)→ Subtype(w,Or(x,Or(y, z)))

• And-Or distribution in conjunctive normal form direction:

Subtype(x,Or(And(y, z),w))→ Subtype(x,And(Or(y,w),Or(z,w)))

Subtype(Or(And(y, z),w), x)→ Subtype(And(Or(y,w),Or(z,w)), x)

87

5.2 Example: Typing Language

• De Morgan Laws, in conjunctive normal form direction:

Subtype(Not(And(x, y)), z)→ Subtype(Or(Not(x),Not(y)), z)

Subtype(Not(Or(x, y)), z)→ Subtype(And(Not(x),Not(y)), z)

Subtype(z,Not(And(x, y)))→ Subtype(z,Or(Not(x),Not(y)))

Subtype(z,Not(Or(x, y)))→ Subtype(z,And(Not(x),Not(y)))

• Double negation rules. Needed under the And symbol and underconjunctive normal form:

Subtype(x,Not(Not(y)))→ Subtype(x, y)

Subtype(x,And(Not(Not(y)), z))→ Subtype(x,And(y, z))

Subtype(x,And(Not(Not(y)), z))→ Subtype(x,And(y, z))

• Subtype identity:

Subtype(x, x)

• Subtype transitivity:

Subtype(x, y) ∧ Subtype(y, z)→ Subtype(x, z)

• Subtype inclusion rules:

Subtype(And(x, y), x)

Subtype(x,Or(x, y))

Subtype(x, z)→ Subtype(And(x, y), z)

Subtype(Or(x, y), z)→ Subtype(x, z)

• Subtype connectivity distribution rules:

Subtype(z,And(x, y))→ Subtype(z, x) ∧ Subtype(z, y)

Subtype(Or(x, y), z)→ Subtype(x, z) ∧ Subtype(y, z)

• Actual subtype facts. For each class or interface,c with immediate superclass or superinterfaced, there

must be a fact of the form Subtype(c,d). Further, for each interfacef implemented by classe, there

must be a fact of the form Subtype(e, f). These facts need not be explicitly specified, but they mustbe

available from theRulesFactory via a schema if necessary. These facts may be generated for classes

of interest by Java reflection and by walking up the inheritance tree.

88

5.2 Example: Typing Language

§65 Example Derivations. ≪Illustrative examples of derivations≫

As an example of these deduction rules, consider the derivation of the fact:

Subtype(java.lang.Integer, java.lang.Object)

Firstly, by virtue of the last rule, the following class hierarchy facts are directly available:

Subtype(java.lang.Integer, java.lang.Numeric)

Subtype(java.lang.Numeric, java.lang.Object)

These may be combined by using the Subtype transitivity ruleto give the following implication:

Subtype(java.lang.Integer, java.lang.Numeric)

∧ Subtype(java.lang.Numeric, java.lang.Object)

→ Subtype(java.lang.Integer, java.lang.Object)

Now, the left hand side of this is a fact by propositional logic expression.14 So, the right hand side is derived

by Modus Ponens, and happens to be the desired goal:

Subtype(java.lang.Integer, java.lang.Object)

Consider instead, the slightly more complicated example ofderiving:

Subtype(And(java.lang.Integer, java.lang.Numeric), java.lang.Object)

This is derived from the Subtype inclusion rule:

Subtype(x, z)→ Subtype(And(x, y), z)

With the instantiationsx ← java.lang.Integer, y ← java.lang.Numeric, z← java.lang.Object.

Now, since the left hand side holds by previous work, the right hand side may be derived by Modus Ponens,

and happens to be the desired derivation goal:

Subtype(And(java.lang.Integer, java.lang.Numeric), java.lang.Object)

§66 Variable Binding. ≪A mention of variable binding≫

Before leaving the discussion of logic rules, there are a fewpoints to mention about variable binding. In

type checking, operation output types are validated against following operation input types using the Subtype

predicate, requiring maintenance of Subtype(output, input) facts. This is straightforward in the case that

89

5.3 Example: Security Reduction Rules

output and inputs types are constant terms, or functions of constant terms which do not involve variables.

The use of variables in input or output types might help express a lack of definite typing information,

or may indicate a high degree of typing flexibility is possible. The general idea is that variables would be

allowed to float and bind freely in the Subtype(output, input) expressions.

There are advantages to be gained in binding variables within the scope of an operation. So, suppose

variableX appears in input type to an operation, and is bound to some unifier expression as part of the

Subtype(output, input) establishment, then if that variable also appears inthe operation output type, or in any

of the other inputs, then it must respect the previously established restraint. In fact, the individual values for

a variable must be unified to produce a most accurate typing restraint for that variable.

More will be said later about the typing mechanism employed in Condensed Graphs. In particular, the

nonlocal implications of allowing local variable bindingswill be discussed, together with algorithms for the

type validation of what now amounts to a DAG with interconnected constraints on the arcs.

5.3 Example: Security Reduction Rules

As an example application of this logic programming structure, security reduction rules will be briefly con-

sidered. So, although designed for implementing type checker validations, the logic support may be reused

within WebCom for a variety of useful purposes, not necessarily typing related.

Security reduction rules are a niche application of the sortto which logic programming is ideally suited.

That logic programming may be leveraged for small concerns within a large software design, like WebCom,

is of utility to the programmers of this system. With the logic programming support in place, applications

with concise FOPL expressions, such as the security reduction rules, may be very effectively solved.

The backdrop to this application is the use of Keynote withinthe WebCom security system. Secure

names are used to provide authentication mechanisms, and consist of strings describing particular element of

the WebCom system, be they nodes, graph, operations, or other elements. The actual security architecture

particulars within WebCom are not of interest. Instead, what is important is that precise secure names can

tend to be long unwieldy strings. So, for display purposes, and more importantly for group authentication

and organisation reasons, these secure names have text manipulation requirements. For instance, a user might

have a particular secure name expressing membership of particular domain or company group organisation.

This name must be easily reduced textually in order to extract this information.

Secure names are organised in a treelike structure which maybe leveraged easily into FOPL symbols.

In fact, the correspondence between secure names and FOPL expressions is very close. Logic programming

excels at such text parsing applications, and is ideal for implementing secure name related tasks.

One such task is the aforementioned name manipulation. Rules are prescribed in order to transform long

precise names into shorter names. These shorter names may contain only specific information required to

make a desired authentication within WebCom. For instance,a WebCom secure name might contain fields

for a domain and an ID. In this case, the name could be written in the formname(domain(xxx), id(yyy)).

90

Chapter Notes

Notice that this syntax, used by the secure name applications, already has FOPL structure. One reason for

reduction rules, is that in many authentication cases only the domain is of interest and all requests from a

particular domain are accepted, i.e.,name(domain(xxx), null) is sufficient for authentication.

The job of the reduction rules is to determine if a given secure name matches any of a set of general

acceptable names, specified in the security policies. Software is required to transformname(domain(xxx),

id(yyy)) into name(domain(xxx), null), according to rules such as:

name(domain(Y), null)← name(domain(Y),X)

Given this example, a logic programming based design for a reduction rule engine is straightforward. Syn-

tactically, the function symbolsname, domain andid are required, together with appropriate constants for

the domain and ID fields. A two place predicatereducesTo is needed to express the reduction relationship

between such elements as in the example, i.e., the earlier rule becomes:

reducesTo(name(domain(Y),X), name(domain(Y), null))

So, reduction rules may be specified textually, avoiding anyneed to hardcode reduction rules into the engine.

This is just a single simple reduction rule example. A typical implementation would include more name

fields, and more complicated name reductions. But, the basicidea is the same.

To verify an authentication, the system requires a secure name to test, and a list of the acceptable secure

names in FOPL form. The resolver checks if the test name reduces to an acceptable names, by simple queries.

The resolver also takes care of applying reduction rules multiple times, if necessary, backing out of reduction

paths, etc. This invisible search work implementation is invaluable to the reduction rule engine programmer.

She just needs to express the logic, do whatever parsing is necessary, and invoke the resolver.15

Note there are many similarities with the typing system. This is unsurprising given that both are search

implementations, and illustrates the value of incorporating the resolver engine into WebCom. Future search

applications may use this existing code to greatly simplifyimplementation work.

Chapter Notes
1Which is what they are really doing in logic programming anyways, but it helps to hide this from the novice.
2And in fact, this is the point. It is up to the logic designer toassign a meaning, or aninterpretationto these items in a way that make

senses for the particular application. FOPL works in the samemanner regardless of the actual application and interpretation.
3This validity interpretation is done semantically using theinterpretation function.
4Really just the functions and predicates. Developers are encouraged to subclassConstant to introduce meaningful class names.
5Not all of conjunction, disjunction, negation, and implication are required of course. Logical implication is sufficient and probably

the most convenient. Conjunction, disjunction and negationmight be implemented by a prepass syntactic rewrite.
6This latter approach has much overlap with the type set logic which will be seen later in relation to the type checking logic. Some

implementation hints for such a propositional logic overlay may be inferred from this type checking logic.

91

Chapter Notes

7More precisely, the cost is expressed asnm, wheren is the number of literals in the test clause, andm is the total number of literals

in all the clauses managed by theClauses object. It is also the number of literals in the query clause times the number of managed

clauses times the average number of literals per clause in theClauses object.
8The actual occurrence of search tree exhaustion is questionable. For certain small logics, exhaustion will come quickly and be an

effective decision tool. For medium logics, exhaustion can be anexpensive and undesirable computation, and for larger logics, search

exhaustion will be preceded by resource exhaustion.
9Substitution values may differ, of course, in the carried state substitution, so a state may not be permitted on the in state queue if

it was seen before but with a different substitution. This is the accepted position and independent of variable structure representation

concerns, anyway. The alternative, incorporating substitution data into determinations of visited states, is not practical.
10The space of possible Java classnames is countably infinite, unfortunately. However, it is always possible to reason about types

within the context of a particular JVM. And the set of types available to this JVM is finite, being bounded above by the set ofall Java

classes ever implemented, of course. So, it is possible to depend on finiteness in arguments about the type logic in practice.Typically,

the denumerable space for Java classnames will be employed for convenience of expression, but with the understanding that if ever

necessary, the brutality of finiteness may be subsumed into arguments. Note since the set of classnames is considered finite, so the

powerset is also finite. Logic constants are taken from this powerset and not from the ground set since logic constants aresets of classes.
11A least such set exists by the virtue of the fact that sets satisfying these criteria may be formed into a nonempty poset under inclusion.

Then some standard arguments, involving presuming no unique least element exists and deriving an easy contradiction, will ensure a

set with the desired properties exists. But, it is easier just to say Zorn’s Lemma downward on top of the chain, and be done with it. We

know things won’t disappear out from under this chain, so we are fine.
12Of course, this is not really true. The production of elementsto populateT by depending on the syntactic nature of the function

names is quite a very distinct thing from imbuing them with a functional definition as done at this point in the text. The difference is

quite important, being the essential notion in stepping froma syntactic form to a semantic form where the semantic quality is built from

the syntactic element. Which isn’t a straightforward thing atall, but still charming.
13This doesn’t matter either way, since the And, Or functions are associative both in semantic interpretation and the syntactic rules.
14This is the real propositional logic, not the pretend one that looks like it is hiding in the And, Or functions of the logic.
15This parsing and resolver invocation work appears also in the type checker application. Since these aspects of the type checking will

be covered in fine detail in the next chapter, there is no real reason to illustrate them in regards to the security reduction rule application.

92

6
Type Checking

This chapter brings together all the key software structurespreviously considered in this dissertation,

to provide Condensed Graph type validation software. Meta information notations specify typing

information. The Event API facilitates implementation without WebCom core modifications. The

Module API provides the application packaging and third party interface. And, the resolver engine imple-

ments basic typing verifications as outlined in theTypeslogic description.

However, this does not exhaust all requirements. There remains considerations in translating metainfor-

mation type strings into usable software elements, namely representations in theTypesobject hierarchy. Also

warranting discussion is the type checking modularisation. The various module configurations and roles,

together with the type checking application modes, are outlined in this chapter.

Finally, the checker algorithms are outlined with attention paid to the graph walking problems in the

design time verification, and to dealing with possible verification paths. The chapter concludes with some

notes on further directions, and recalls the developments in this dissertation.

6.1 Parser

The syntactic portions of theTypeslogic have already been outlined, consisting essentially of the functions

And, Or, Not, together with the predicate SubType, and constant symbols, one for each possible Java class-

name string in fully quantified notation.

93

6.1 Parser

So far, theTypeslogic implementation has consisted of specialized extensions of basic logic software

objects. This enablesTypesstatements to be formed programmatically and verified by theresolver engine.

But programmatic construction is unwieldy and restrains aneasy dynamic expression of logic statements.

TheTypeslogic thus requires a parser frontend. While parser implementation is not excessively difficult,

it helps to carefully examine this implementation and interaction with existing logic software. This does

represent a diversion before the main type checking discussion, however.

Once implemented, the parser converts operatorInfo type string data into actual software logic classes.

So, when type checking a particular operation, theInfo for that operation is instantiated and the type strings

parsed.1 The results of this parse are then used by the resolver to verify the satisfaction of input operand and

output types with the types incident on them.

The parser is generated using the SableCC parser generator tool, written by Etienne M. Gagnon. This

tool is applied to a BNF description of theTypeslogic, and produces comprehensive parser software which

will be described presently. BNF outline particulars will be mentioned first.

§67 BNF Description. ≪A BNF description for the type element parsing≫

Figure 36 illustrates theTypeslogic BNF. A complete grammar including token and helper declarations, and

as used in the SableCC processing, may be found in Appendix D.TheTypeslogic BNF start symbol is the

Type production, describing acceptable type strings. These acceptable types are:

• A parenthesised Type production, included for conveniencein writing type strings.2

• A string denoting a constant in the logic, i.e., a Java classname string.

• A variable type denoted by the VAR symbol and a parenthesisedvariable identifier.

• A Not type, denoted by the NOT symbol and argument type to invert.

• An And type, denoted by AND and a parenthesised list of types to conjoin. This list, expressed by the

And List production, may contain more than just two types for convenient cascaded And expression.

• An Or type following the model of the And type, but instead supported by the OrList production.

§68 SableCC Parser. ≪The SableCC produced parser software≫

SableCC is a parser generator tool, in the style of a lex and yacc combination, designed by Etienne M.

Gagnon. It provides for both DFA lexing and LALR(1) parsing based on eBNF grammar syntax. The real

SableCC value, though, is its OO parser generation. SableCCoutput consists not only of basic lexer automa-

ton and parser classes, but also of an OO abstract syntax treebased on the input BNF. SableCC automates the

task of producing a parserandcomplementary tree hierarchy. So, given a grammar, the SableCC tool may be

applied without further work to produce a complete parser software architecture.

With SableCC, a software designer need only provide an inputBNF, and implement a visitor adaptor

to perform desired semantic operations on the generated abstract syntax tree. Ease of application and the

94

6.1 Parser

〈

Type
〉

−→ ‘(’
〈

Type
〉

‘)’

|
〈

ConstantNameString
〉

| ‘VAR’ ‘(’
〈

VariableNameString
〉

‘)’

| ‘NOT’ ‘(’
〈

Type
〉

‘)’

| ‘AND’ ‘(’ 〈And List〉 ‘)’

| ‘OR’ ‘(’ 〈Or List〉 ‘)’

〈And List〉 −→
〈

Type
〉

| 〈And List〉 ‘,’
〈

Type
〉

〈Or List〉 −→
〈

Type
〉

| 〈Or List〉 ‘,’
〈

Type
〉

Figure 36: BNFTypesLogic

extent to which SableCC integrates into an OO designed application mean SableCC is an effective tool for

implementing “little language” elements in a larger software design.

When run on theTypesBNF, SableCC produces a parser for converting metainformation typing strings

into automatically generated abstract syntax tree objects. However, the existing logic tree hierarchy,outlined

in the previous chapter, is logic language independent and so superior to a SableCC generated tree. Further,

the resolver is designed to operate specifically on the more general tree hierarchy.

This does not present difficulties, though, since a simple SableCC visitor walker may be written to directly

map SableCC trees into custom designedTypeslogic trees. Note, the resolver might have been implemented

to operate with the automatically generated SableCC trees instead. This would have just meant finalising the

Typeslanguage and generating the SableCC abstract syntax trees before implementing the resolver architec-

ture. The resolver code could then have been implemented to employ the SableCC generated classes.

Although possible, this approach is not a good design for tworeasons. The first being that it is fragile

to changes in theTypeslogic specification. So, if the structure of type information strings is changed for

whatever reason, there are potentially nontrivial knockonchanges required in the resolver architecture. For

this reason, using a mapping tree walker to produce logic trees from SableCC trees is a gain, in that it isolates

the resolver structures from syntactic changes in the expression of type strings.

The second, and more important, reason is designing the resolver to use the SableCC tree means limiting

it to the Typeslanguage only. The resolver is a valuable software development tool within WebCom and

should not be restricted to just a single application.

Although the implementation chosen requires a mapping visitor class and incurs overhead on parsing

operations, this is also a necessary and justified cost. The amount of actual parsing and mapping necessary

95

6.2 Runtime Type Checking Problem

may be limited by caching and reusing previously processed logic structures. Nevertheless, the parsing is

already quite efficient and need not be an optimisation focus.

Detailed examination of the generated parser and of the generated abstract syntax tree, in particular, is un-

enlightening. Especially, since these components are not used outside of their parsing application. However,

the handcoded tree walker mapping SableCC trees intoTypeslogic trees deserves some mention. This visitor

class,TermParser, extends the automatically generated depth first visitor adaptor,DepthFirstAdapter.

Consequently, this operation isTypeslogic parser particular, but may be adapted easily for otherlanguages.

TermParser visits the SableCC tree elements which correspond directlyto Constant, Variable, And,

Or, andNot types inTypeslogic trees, and generates an appropriateTypeslogic tree element in each case.

If mapped elements are constructed on the postvisit side of depth first node visiting, then any necessary

referenced types will already have been created. So, for instance, in generating anOr element, the argument

type objects needed will have already been generated by previous deeper walk visits.

It is also convenient to implement a facadeparse method in theTermParser class. This method takes

a type string input and produces a correspondingTypeslogic element, if possible. This method arranges

the necessary SableCC lex and parse calls, then invokes theTermParser walker on the resultant object to

generate the desiredTypeslogic object.

6.2 Runtime Type Checking Problem

The basic approach to Condensed Graph type checking has already been mentioned. The idea being to

associate types to operator inputs and outputs, and to verify output types are subtypes of types at operator

inputs to which they are connected. This typing informationis stored in operatorInfo objects and is parsed

into Typeslogic tree elements by the above parser tool.

§69 Basic Runtime Type Checking. ≪Issues in type checking Condensed Graph at runtime without variables≫

There are two primary type checking scenarios, runtime verification and beforetime verification. Beforetime

verification will be considered below, so for now type checking is assumed to run at Condensed Graph

execution time. Upon realisation of a full computational triple, or fireable node, in the WebCom engine,

the type safety of the generated instruction might be verify. In this case, all actual operands and types are

available, and this scenario involves just checking subtype relations for each operand, i.e., checking that the

actual operand class type is a subtype of the required class type.

This kind of immediate type verification is common in interpreted execution. Implementing this within

the proposed WebCom type checker is not difficult, and would increase graph execution confidence.

It helps to first consider the variable free implementation case, the case where no type strings use variables.

This simplifies operand class type verification considerably. Checker rules include:

• For constant operand types, the checker verifies the actual operand is a subtype of the required constant.

96

6.2 Runtime Type Checking Problem

• In the case a Not function type is required, the checker extracts the Not argument type and compares

the actual operand class to that type. The check fails if the operand class satisfies this subtype relation.

• If the required type is an And type, then the checker checks the operand type against each of the And

type arguments, fails the test if the operand fails against any argument type.

• Similarly, with an Or type, the checker tries the operand against all of the Or argument types, but just

needs one of the subchecks to succeed.

Note none of this requires use of the resolver, and so may be efficiently implemented. Further, theTypes

logic syntactic rules are not used in this simplified decision procedure, due to the restricted query natures. No

expression rewriting is needed to verify logic queries of the form Subtype(constant, constant).

This checker routine does not offer the full expressiveness available from variable use, butdoes provide a

simple effective check if variables are either not employed or discounted. In the case that variables are to be

ignored, they may be substituted with theObject type.

This relaxation of variables to theObject type will probably mean certain invalidly typed operands are

passed when they ought to fail. However, this relaxation toObject is not as slack as might be supposed and

much poor typing will still be caught. For instance, supposethe required type string is:

And(X, java.lang.Integer)

In this case, the realised type in the check is justInteger, and the checker will fail anything not anInteger

regardless of the variable typing. In particular, if the variable does not additionally restrict the type below

Integer, then the checker will function completely correctly in this case.

This approach gives a fast simple check, providing reasonable but not complete levels of type security.

For practical purposes, this might be adopted as the runtimechecker algorithm of choice in a WebCom system

especially if designtime verification is also employed.

§70 Variables and Runtime Type Checking. ≪Variable use semantics. Runtime checker implementation with variables≫

Variables used in type strings may match against any permitted type in the logic, in line with FOPL variables

use. This is implemented by using the resolver to organise the direct verification of types, including the case

of variables. A type check involves invoking a simple Subtype query, to check an actual operand classname

constant is included in the required operand type. The resolver takes care of any variable binding necessary.

It is even possible to disregard many logic rewrite rules andoperate with a sublogic ofTypes, so improving

resolver efficiency considerably. In particular, logic rules involvingcomposite element rewrites on the left of

Subtype predicates are superfluous. As are some rules involving rewrites on right of predicates.

The runtime check in the presence of variables might be implemented entirely without recourse to the

resolver, but is considerably complicated requirements tofind correct variable substitutions. This is especially

problematic if the same variable many times in the target type, or under a Not negation function. The need

97

6.2 Runtime Type Checking Problem

for the resolver, or for some clever unification, may be seen in examples such as:

Subtype(java.lang.Integer,Or(Not(X),And(X, java.lang.Numeric))

Matching against the left Or argument means bindingX → Not(java.lang.Integer), and one possible

correct matching on the right would bindX→ java.lang.Integer. The problem is incorporating binding

value selection into the checker in the absence of a resolverinvocation. This example is manageable, but

consider multiple Not symbols in the left argument, and nested in a complicated structure, and with more

than one variable. Determining the correct variable bindings could be very difficult in such cases.

The above example is also interesting since the two binding choices are mutually incompatible. The

choice does not matter in direct verifications of operands against targets taken pairwise, since all that is

required is some instantiation making the statement true. The particular binding is not of much interest.

This is not a complete reflection of the variable type checking problem, though. Simple point to point

verification is sufficient in the absence of variables, but there is more to consider with variables. Specifically,

variable binding scope extends beyond simple queries and cannot be considered operandwise alone.

Variables are bound on a per node basis. So, if an operand or output node position mentions a variable, that

same instantiation is visible to all operand and output positions of that node. This means that if a variable is

bound during an operand verification say, and if this variable is also mentioned at a different type verification

on the same node, then the previous variable binding must be respected.

So, numerous type verifications are made with shared variables in verifying node typing. Operation type

verification begins with a blank variable bindings list and takes each operand verification in turn. The first

operand type is verified or refuted using the resolver. Now, afull use of the resolver may give multiple

satisfying bindings, as in the earlier example, and each of these bindings is a possible initial mapping from

which to check the second operand. Further, verifying subsequent operands presents even more alternatives.

Verification of the second operand is done in the context of the first operand verification results. Simply

applying the first result substitutions to the second operand target type might be too narrow, since the second

verification may only be successful with looser variable binding than required in the first operand verification.

A solution is to verify the second operand directly, withoutconsidering the first operand verification

substitution. If the second operand verification returns a candidate substitution then this is reconciled with

the first operand substitution if possible. This reconciliation action is described in detail below, but can be

interpreted as ensuring the substitutions may be combined without introducing inconsistencies.

If the substitutions can be reconciled, then the second operand verification is accepted and the the third

operand may be considered, etc. Note, that the second operand verification might produce many candidate

substitutions, which, if successfully reconciled, form the alternatives for the third operand verification.

This gives rise to an explicit search procedure, and it may bebetter to instead use the resolver implicit

search itself. In this case, the conjunction of operand and output subtype checks for a single operation would

form a composite query for resolver verification. This approach eliminates the need to reconcile substitutions,

but represents a potentially very difficult resolution.

98

6.3 Designtime Type Checking

For purposes of runtime verification, resolver use is potentially too computationally expensive. Neither

are search operations during graph executions justifiable,even with verification result caching. A nonvariable

checker withObjects for variables may be the most practical option for runtime verification.

If practicality is not a consideration, the composite queryapproach is a straightforward solution algorithm.

However, there are two morals here. The first being that the resolver presents efficiency difficulties which

may be too costly at runtime. The best hope may be for practical designtime verification, where typing

information may be retained for use in runtime checks. Alternatively, designtime checks might be digitally

signed, and the graph thereafter used with confidence at runtime.

The second moral is in operand type checking processing and substitution reconciliation. This clumsy

process illustrates how the more complicated designtime verification problem will be at least as complicated.

6.3 Designtime Type Checking

The second type checker scenario is before runtime, or designtime, static type checking, typically employed

in graph design or automatic construction tools. The idea isto verify an entire graph, rather than just a single

operation. This involves considering graph node interconnections, which is not terribly difficult but does

require a level of computational effort beyond that in runtime type checking.

In fact, designtime type checking is not too different from runtime checking. The main differences being

that designtime checking involves a series of checks of the form performed in runtime type checking, and

also that input types are no longer as simple. This is becausecomplicated type strings may propagate from

outputs to next inputs without acquiring a concrete actual type as in the case of runtime verification.

§71 Variable-free Designtime Type Checking. ≪Designtime type checking considered without the problem ofvariables≫

Designtime checking will first be considered without type string variables. This is not as great a simplification

as in the runtime checking case, since output strings need not be as straightforward. And because output string

are fed forward to next inputs, deciding subtype inclusion at operand inputs is not as easy.

The basic problem outline begins with a DAG,G. This graph is intended to represent the Condensed

Graph to be verified, but reinterpreted in operand flow terms rather than in regular Condensed Graph arc

semantics terms. The graphG possesses a node for each Condensed Graph node, and an arc from nodee1 to

e2 if the output of the Condensed Graph node corresponding toe1 is directed to an input of the Condensed

Graph node corresponding toe2.3 Arcs are assigned directions from output ports to input ports.

Each directed arc ofG is assigned the SubtypeTypeslogic predicate to be tested on that arc. So, ifX is

the output type of nodee1 and ifY is the input type of the operand on nodee2, to whiche1 is connected, then

the logic predicate statement Subtype(X,Y) is associated to the arc frome1 to e2.

It helps to relabel logic variables to enforce the variable scope rules described earlier. To do this, each

graph node is processed in turn. At each node, the variables in theright handplaces of subtype logic predi-

cates on incident in arcs are relabeled, as are the variablesin the left handplaces of subtype logic predicates

99

6.3 Designtime Type Checking

on incident out arcs. The relabeling used does not matter, save that labels are globally unique on a per node

basis, perhaps via the use of specific node prefixs to variableidentifiers.4

The problem in designtime checking is to find a variable instantiation making all subtype predicates true

simultaneously. Of course, this could be verified by the resolver in a manner akin to the large composite query

option proposed earlier. But, the question arises as to whether there might be a more efficient approach.

So, given that type strings are assumed variable free, thereis potential to adapt the variable free runtime

algorithm to designtime verification. The hope is a direct pairwise verification procedure may be developed

such that a complete graph verification amounts to the iterative application of this procedure to all arcs.

This may be the case, but an approach along the lines of the previous subterm decomposition technique

runs into problems. The approach which closest mirrors the previous effort is to decompose the right subterm

of test Subtype predicates into constant terms. This may be done in the same fashion as in runtime checking,

so it may be assumed that all test right subterms are constants.

At this point, the subtype predicate may be reversed, since Subtype(X, c) is the same check asX ⊂ c, or

asc′ ⊂ X′, by set complementation. So, potentially composites term may be transfered to the right subterm

place, leaving tests of the form Subtype(Not(c),X). Here, theX subterm may be decomposed as before,

leaving tests like Subtype(Not(c),d). These, however, may be difficult to check. Although, not impossible,

these may require large indices in order to verify. For instance, to determine Subtype(Not(c),d), it is necessary

to know if the types represented by classname constantsc andd intersect. However, this means, for instance

if d is an interface, that all subtypes ofc need to be examined to determine if they implement the interfaced.

If this test problem can be overcome, this mechanism might beused as a loose designtime check mirroring

loose runtime checks. As in the runtime case, variables may be replaced byObject type to get closer

verification. This may be a more efficient approach than the strict checking described below.

Note the test problem identified above is not insurmountable, since indexing an entire JVM classname

space is practical and routinely done in Java IDE tools, for instance. There is a one-time index construction

penalty, and care is needed in datastructure choice, but otherwise this forms a very realistic option.5

§72 Variable Designtime Type Checking. ≪Considerations of the full type checking problem at designtime≫

Including variable type expressions does not change the problem definition given earlier. The statements

defining the type checking designtime problem in terms of graphs and logic expression populated arcs still

applies. Furthermore, the full designtime type validationproblem may still be solved by invoking the resolver

on a large composite query consisting of all the properly scoped subtype expressions conjoined.

Variable binding problems still complicate the task of deriving a full designtime check algorithm without

toplevel recourse to the resolver. Resolver use is unavoidable, of course, in order to validate direct arc checks

since logic language rewrites may be required. So, rather, the goal is to minimize resolver use and localise

resolver application to single arc problems. However, thisruns into difficulty with variable reconciliation.

The idea is to check each graph node in turn, verifying operand types with preceding output types. How-

ever, this verification must be done in the presence of variable binding concerns. So, all candidate resolutions

for the operand types must be reconciled before a resolutionmay be accepted as a valid candidate.

100

6.3 Designtime Type Checking

Operand types are validated in turn at each node and any returned resolution substitutions need to be

confirmed against a maintained set of valid substitutions collected in the course of the previous verifications.

The current resolution substitution is either acceptable against some of the potential global solution substitu-

tions, in which case it is combined with these substitutions. Alternatively, the resolution substitution does not

conform to some substitution candidate, in which case alternative resolutions are required to maintain those

substitution candidates, or they must be dropped.

This process is effectively implementing what would be the resolver search in the case of the large toplevel

resolver strategy. As such, search strategy concerns mightbe considered. The use of backtracking and the

maintenance of search structures is also a problem in the design of this algorithm.

§73 Statement of designtime type checking algorithm.≪Description of the potential algorithm operation≫

For clarity, it may be better to simply state the algorithm operation, rather than try to talk around it. The algo-

rithm for beforetime type checking verification begins witha Condensed Graph to verify. For convenience,

it is assumed all type strings have been extracted and relabeled according to scope rules. This can be done

by processing each node in turn, determining the operator ateach node,6 and instantiation the associated

Info. Type strings may be extracted from thisInfo and variables relabeled to be globally unique. Type

strings must then be stored in accessible form for later lookup, perhaps by hashing based on parent node and

operand index. These type strings may also be presumed to have been parsed intoTypeslogic objects.

The main algorithm body consists of processing each graph node in turn, and it may be better to process

nodes in a breath first order, so as to maintain locality in thetype checking. This local reference is useful in

eliminating substitution alternatives invalidated in thenear neighbourhood of their construction.

It is also necessary to maintain a database of valid possiblesolutions, together with tree walk position

state, for algorithm purposes. In this way, the algorithm may also journal various backtrackings and so forth

which the resolver would otherwise have managed in a large toplevel subtype check. This database is initially

populated with an empty substitution and an initial state marker.

At each node, the algorithm verifies typing data for each operand in turn. For a single operand verification,

the operand type and the preceding output type are extractedfrom the storage. At this point, the resolver is

invoked to verify the previous output type is a subtype of thecurrent operand type. The resolution will

result in a set of substitutions making the statement true. Since all of these resolution substitutions might be

considered, the resolver must run to completion on the test.This is unfortunate from an efficiency viewpoint.

Each candidate resolution substitutions must be vetted forconsistency with each substitution in the set

of substitutions maintained by the algorithm. This vettingis the reconciliation step mentioned earlier and

will be discussed more in the next section. The purpose of thereconciliation step is to establish whether the

current candidate resolution substitution may be combinedwith a particular substitution from the set held by

the algorithm. If it can, then this give rises to a new substitution in the algorithm list.

More precisely, the resolver returns potential substitutions, and the algorithm maintains currently valid

substitutions. Resolver substitutions are pairwise reconciled with algorithm substitutions, and successful

reconciliations form the algorithm substitutions for the next step. Verification fails if this set becomes empty.

101

6.4 Substitution Reconciliation

This list of substitution possibilities also tracks the backtracking which would be managed by the resolver

in the large query case. There are opportunities for clever backtracking in this explicit search organisation,

and for other optimisations not possible in the resolver solution. Moreover, running resolution to completion

at each operand verification may not be necessary, since the search may move deeper in the search tree

without waiting for all operand resolution possibilities.

6.4 Substitution Reconciliation

Substitution reconciliation is the process of examining two substitutions to determine compatibility. Com-

patible substitutions are then merged. For the discussion here, assume the substitutions to reconcile areθ and

φ. Let Σ = vars(θ) ∪ vars(φ) denote the variables mentioned in these substitutions, and as beforeT denotes

theTypeslogic term space, i.e., the model for the logic elements which may be referenced, or the space of

objects for which aTypeslogic variable may stand. So, logic variables may be viewed as functions intoT.

This setup views substitutions as functions fromΣ→ T|Σ|. There is a subset ofΣ consisting of variables in

the substitutionθ which are bound to new values. In the function correspondingto θ, denotedθ f , the elements

of this set are mapped to the corresponding elements ofT in the substitution expression. The other elements

of Σ should be mapped to an element representing the whole ofΣ, which for simplicity may be the element

corresponding toObject.7 A similiar construction is used to formφ f .

Now, given these two substitution functions,θ f , φ f : Σ → T|Σ|, defineθ f ∩ φ f is componentwise as

θ f ∩ φ f (s) = θ f (s)∩ φ f (s). This represents the substitution which is the less strictrefinement of bothθ andφ,

i.e., the infimum in the set inclusion based lattice for substitution functionsθ f , φ f : Σ→ T|Σ|.

Reconciliation means computingθ f ∪ φ f and failing if any component of this function has an empty set

value. This corresponds to the case where the substitutionsare not compatible. If successful, reconciliation

returns theθ f ∩ φ f function as a substitution to the caller. The reconciliation of θ andφ is done as follows:

• All the variable name and binding pairs fromφ are inserted in a queue,Q. These variable-binding pairs

are processed in turn, ending up in a new substitution,µ, initialised to contain the bindings inθ

• On processing a variable-binding pair fromQ, if the variable is not already inµ as a variable-binding,

it is inserted by substitution composition and the next variable-binding pair fromQ considered.

• On the other hand, if the variable-binding already appears in Q, then the two substitutions must be

combined. SupposeS→ T is already inµ and the current variable-binding isS→ T′. HereT andT′

may have any instantiations, but theS variable must stand for itself, of course. The correct new binding

should beS→ And(T,T′). However, it must be determined that this new binding is notempty before

accepting the reconciliation. This check might be done, forinstance, by the resolver in querying for an

X value for Subtype(X,And(T,T′)). It may otherwise be checking by examiningT andT′.

• This process continues until either a failure is isolated orQ becomes empty. In this latter case, theµ

substitution is returned as the result of the reconciliation.

102

6.5 Type Checker Modules

6.5 Type Checker Modules

These reconciliation and verification algorithms need to beparceled in a form suitable for incorporation in

WebCom. This packaging is in the form of modules supporting the various type checking scenarios.

Separating runtime from beforetime checking into separatemodules is a convenience. So, to enable

runtime checking, the runtime checker module would be loaded and informed if strict or loose verification

was desired. In the case of beforetime checking, the beforetime checker could be loaded instead. This would

include additional functionality to support the augmentation of graphs with verified typing information.

Both modules would use essentially similar operations. Theruntime version being a microcosm of the

beforetime problem as already discussed. So, while the module algorithm implementations would share a

number of features, their invocation hooks and module interface forms would be quite distinct, runtime being

effectively invisible, beforetime requiring explicit invocation.

The two modules ought to be similar in configuration. Both scenarios above discussed the striped down

and more efficient verification at the cost of accuracy, and the implemented modules ought to allow the site

administrator or graph designer flexibility as to whether strict or loose verification is desired.

The runtime checker can be invisible to the user by using the Event API. So, all an administrator or user

would have to do to enable runtime checking is to load the runtime checker module. This module would then

employ the Event API to spy on graph execution and node production. When a node is completed, or perhaps

just before anInstruction is executed, the runtime checker could invoke a check on the node or operation.

This monitoring is easy to arranged using the Event API adaptor classes and amounts to just a few lines in an

adaptor extension and a line in the module load method registering the listener.

The beforetime checker requires more explicit invocation,due to use pattern. The perceived usage is in

IDE graph design. The designer may periodically run a loose check during graph construction. This quick

check might then verify typing information over the completed portions of the graph.8 The checker algorithm

might also return information relevant to typing failures,so as to help isolate areas of poor typing.

When satisfied with a graph, the designer may then invoke a moretimeconsuming full verification. The

intention here is that this check be used to provide preverification for the runtime execution. So, the IDE might

verify a graph and if successful provide a cryptographic hash indicating successful verification. The runtime

environment might demand the production of such a token before agreeing to run the graph. Of course, this

outline is vulnerable to deliberately malicious signings since a tool may be used to produce verified tokens

for graphs irregardless of whether type verification succeeded.

The type checking algorithms also have applications in debugging WebCom code. They may be used to

check initially for ill typing, or used in conjunction with atrace replayer to examine typing in a failed run.

Both modules requireInfo object and parsed type string caches.9 Since this is common functionality, it

might implemented in a common parent class, or in a module upon which both checkers depend.

In all, the module harness designed in previous chapters provides very adequate support for implementing

type checking concerns, and illustrates the Module API benefit to WebCom developers. In the case of type

checking implementation, most effort was spent on designing algorithms rather than on WebCom integration.

103

6.6 Finally. . .

For this reason, the work to the end of the previous chapter, which may be assumed to exist in any future

development WebCom work, forms a base upon which to build applications and extend WebCom.

6.6 Finally. . .

§74 Further Work. ≪Improvements, necessary and desired≫

Some of the many areas where this type checker outline might be improved will be mentioned briefly here.

There are also some suggestions as to future work, in addition to work suggestions already commented on.

The checker algorithms, especially the full verification algorithms deserve further refinement. Central is

the determination of efficiency in programming the entire verification as a single logic program. More effort

is also needed in improving the suggested search strategies, especially to handle better backtracking.

The full specification of classnames in theTypeslogic is cumbersome. Type string namespace conventions

might be implemented, including support for import statements inInfo objects.

A system for dealing with functional dependencies in type string specifications should be developed,

especially in the case where output types depend functionally on actual operand types. Take the addition

operation, for example. The output types should be tightly expressed in terms of the widest input type, but

there is no immediate method to express this in the current logic. There are approaches involving variable

bindings which approximate the desired effect, but the logic should have notation to express conditionality

better. Even an implication statement within the logic would suffice.

Since variable resolution introduces serious time penalties, establishing when variables are required

would be very beneficial. Determining cases suitable for variable elimination is naturally heuristic in na-

ture, at best, but the potential gains warrant an expenditure of effort in this direction.

Finally, there are problems with dynamic destinations and operations in type checking. The current

checker approach requires static destinations to a large degree. With the use of dynamic operations more

likely in future, there are concerns about the whether the beforetime checker routines can manage this dy-

namism. At very least,Info objects might be extended to express the dynamic possibilities.

§75 Concluding Remarks. ≪A reminder of where this dissertation has been≫

Before concluding this discussion, it is worth recapping onthe various applications and software developed

during the course of this document. The list of developmentsforms an eclectic list, mostly falling under the

theme of supporting the future software development withinWebCom.

Toward improving WebCom developer support, metadata notations were introduced to specify details

relating to internal datastructures without needing to augment these actual structures.

Aspect Oriented Programming was introduced in the guise of the Event API in order to provide third

parties with event information from the WebCom core with no modification to internal WebCom structures.

This event implementation was particularly designed with efficiency in mind and forms the bedrock of the

runtime type checker application. Wider AOP facilities beyond those in the Event API are also available.

104

Chapter Notes

Much work was done on the Module API, especially in reformingthe view of WebCom modules to fall

in line with a completely-plugin architecture. This philosophy shift is probably the most potentially useful

aspect of this work. A completely plugin view may be used to ringfence the fragile WebCom core.

Another major addition to the WebCom developer toolkit was the resolver and introduction of logic

programming. The utility of logic oriented programming wasillustrated in the type checker design, which

might have be implemented immediately as a schema for producing logic programs for resolution.

Aside from design work, some useful applications have been developed. Included primarily to illus-

trate the particular features, they also form a useful collection of WebCom support software. Applications

have included the J2ME submission tool, and the generic WebCom launch tool, both of which build on the

Submission API. The automated documentation tools also depended on the Information Framework.

There has been the execution trace application built on the Event API and incorporated in the trace mod-

ule. This complements the other modules developed as part ofthe SysTray application providing a desktop

based WebCom system. These include the statistics, IDE bridge, BeanShell and other GUI modules.

The logic resolver is key to type checking, but is also of use in supporting potential security rule rewrites

and other problems. In conjunction with logic, the SableCC generated parser ought to be mentioned, in

particular because it effectively combines the Information Framework with the logictool.

Finally, there is the type checking application itself, which although the nominal goal of this project,

actually formed more of a convenient endpoint for the development journey. It is perhaps best to end by

hoping these new frameworks, designs and API will serve their intended purpose of improving the capacity

for third parties to implement interesting new WebCom functionality.

Chapter Notes
1Info objects and type string logic structures will typically be cached, so parse per operation inefficiencies are not always incurred.
2In fact, the productions are suboptimal. For instance, the variable line of the alternatives could be written as just:

‘VAR’
〈

VariableNameString
〉

That is, without the parentheses symbols, since the parentheses would be parsed by the first production alternative even if they are not

explicitly required. Of course, then the parentheses wouldbe optional and the function notation not required.
3Note that this definition restricts the applicability of thetype checking algorithms to those graphs for which these dataflow paths can

be established. And specifically, there is no reason why graphs which involve dynamic destinations should be verifiably inthis system.
4In the case of a Java implementation, this relabeling might employ the object memory reference, for instance. Of course, this

definition is for description purposes and isn’t suitable for a Java implementation, anyways.
5There would be problems with exchanging classes between WebCom instances, though. The type checker would need to knowall

the classes that may be required in the verification, whether or not they are present in the local JVM.
6The operators cannot be dynamic in this case, or if they are, the type must be easy to determine.
7This is slightly deceptive in thatObject might appear legitimately as a substitution value, and it is undesireable to confuse these

entities. However, for practical purposes this approach will work.
8This is how it might work in the IDE case if building a CondensedGraph in piecemeal fashion.
9Parsed type strings can be reused also if revariablised.

105

Appendix A —NodeInfo Example

This appendix contains the promised exampleNodeInfo source code from Chapter 2, describing aNodeInfo

for an addition operation taking two numeric parameters.

package webcom.nodes.core;

import webcom.cgengine.Strictness;

import webcom.graphinfo.NodeInfo;

/**

* GraphInfo for Addition Node

* / 10

public class AdditionNodeInfoextends NodeInfo

{

/**

* Get the name of this node

*

* @return the name.

* /

public String getName()

{ return "Addition Node";

} 20

/**

* Get the graph name this graph info specifies.

*

* @return the name of the graph to execute.

* /

public String getNodeName()

{ return "webcom.nodes.core.AdditionNode"; //$NON-NLS-1$

} 30

106

Appendix A — NodeInfo Example

/**

* Accessor for string node description

*

* @return the stored node description string.

* /

public String getDescription()

{ return "Add the operands.";

} 40

/**

* Get the number of arguments that are specified in this graph info.

*

* @return the number of arguments the condensed graph requires.

* /

public int getNumArguments()

{ return 2;

} 50

/**

* Return the type of the i-th argument(index origin zero).

*

* @param i the index of the argument to query type of. Ignored

* @return one of Argument type values

* /

public String getArgType(final int i)

{ return "OR(java.lang.Byte, java.lang.Short, " + //$NON-NLS-1$ 60

"java.lang.Integer, java.lang.Long, java.lang.Float, " + //$NON-NLS-1$

"java.lang.Double)"; //$NON-NLS-1$

}

/**

* Return the description of the i-th argument(index origin zero).

*

* @param i the index of the argument to query description of

* @return String describing i-th argument 70

* /

public String getArgDescription(final int i)

{ return "A summand";

}

/**

107

Appendix A — NodeInfo Example

* Return the strictness of the i-th argument(index origin zero).

*

* @param i the index of the argument to query type of 80

* @return strictness of the i-th argument.

* /

public Strictness getArgStrictness(final int i)

{ return Strictness.STRICT;

}

/**

* Get the number of outputs that are specified in this graph info.

* 90

* @return the number of outputs in the condensed graph.

* /

public int getNumOutputs()

{ return 1;

}

/**

* Return the type of the i-th output(index origin zero).

* 100

* @param i the index of the output to query type of. Ignored

* @return output type string

* /

public String getOutputType(final int i)

{ return "OR(java.lang.Byte, java.lang.Short, " + //$NON-NLS-1$

"java.lang.Integer, java.lang.Long, java.lang.Float, " + //$NON-NLS-1$

"java.lang.Double)"; //$NON-NLS-1$

}

110

/**

* Return the description of the i-th output(index origin zero).

*

* @param i the index of the output to query description of

* @return String describing i-th output

* /

public String getOutputDescription(final int i)

{ return "Result of Addition";

}

} 120

108

Appendix B — Event Trace

This appendix contains a full listing for the operation of the event trace Event API application on the odd

parity test graph, depicted in Figure 37 below.

EvenE XNOT

Figure 37: Odd parity testing graph.

The detailed output from the event trace module on invoking this parity test graph within WebCom is

included below. The events leading up to and including theengineRun event essentially track the WebCom

bootstrap. Graphs are bootstrapped in WebCom by first makinga top level condensed node with the graph to

execute as a dynamic operator. This top level node is populated with the desired operands and pushed onto

the WebCom execution queues. This will cause the node to be expanded and the desired graph to be allocated

and executed. By the time theengineRun event occurs below, the actual graph is ready to start running.

The E node of this graph is then queued and subsequently an instruction for its operation is constructed.

This instruction is then executed in the engine module, the execution of which prompts the graph allocation.

Next is the node containing the Even operator. This is queued, a containing instruction made and sent to

the scheduler for scheduling. The instruction is then finally passed to the load balancer for queueing. The

node’s instruction ends up being passed back to the engine module for execution.

The case of the NOT node is handled similarly. However, the X node is executed directly at the engine

module without being passed to the scheduler, etc. The operation of the X node prompts the graph deal-

location. The RGExitNode plays a role in the implementationof the X node operations and follows the

ExitNode.

Back at the top level, the backplane receives a message informing it of the result, which it can pass to the

user tool used to invoke the WebCom instance, i.e., the IDE orcommandline tool, etc.

The full trace of events is included overleaf.

109

Appendix B — Event Trace

newInstructionInWebCom :-

webcom.core.Instruction@1e6e305

operation main

- -

instructionReceived :-

webcom.core.Instruction@1e6e305

operation main

- -

engineQueueNode :-

webcom.cgengine.Node@45e228

uid -4818b48d:1035bcff0d4:-7fac

short_name main

cg_container null

- -

newInstructionInEngineModule :-

webcom.core.Instruction@2b249

operation main

- -

schedulerScheduleInstruction :-

webcom.core.Instruction@2b249

operation main

- -

loadBalancerQueueInstruction :-

webcom.core.Instruction@2b249

operation main

- -

instructionExecutionInEngineModule :-

webcom.core.Instruction@2b249

operation main

- -

instructionExecutionInEngineModule :-

webcom.core.Instruction@1e6e305

operation main

- -

backplaneSentMessage :-

EngineMessage: source = agador/143.239.211.35 module value: top level,

destination = agador/143.239.211.35 module value: engine,type = INSTRUCTION,

data = webcom.core.Instruction@1e6e305

- -

engineRun :-

- -

engineQueueNode :-

webcom.cgengine.Node@163956

uid -4818b48d:1035bcff0d4:-7faa

short_name webcom.cgengine.EnterOp

cg_container main

- -

newInstructionInEngineModule :-

webcom.core.Instruction@10e434d

operation webcom.cgengine.EnterOp

- -

instructionExecutionInEngineModule :-

webcom.core.Instruction@10e434d

operation webcom.cgengine.EnterOp

- -

engineAllocatedGraph :-

110

Appendix B — Event Trace

webcom.cgengine.DynamicCG@789869

uid -4818b48d:1035bcff0d4:-7fac

full_name main(-4818b48d:1035bcff0d4:-7fac)

name null

- -

engineQueueNode :-

webcom.cgengine.Node@c063ad

uid -4818b48d:1035bcff0d4:-7fa8

short_name webcom.nodes.core.EvenOp

cg_container main

- -

newInstructionInEngineModule :-

webcom.core.Instruction@9abc69

operation webcom.nodes.core.EvenOp

- -

schedulerScheduleInstruction :-

webcom.core.Instruction@9abc69

operation webcom.nodes.core.EvenOp

- -

loadBalancerQueueInstruction :-

webcom.core.Instruction@9abc69

operation webcom.nodes.core.EvenOp

- -

instructionExecutionInEngineModule :-

webcom.core.Instruction@9abc69

operation webcom.nodes.core.EvenOp

- -

engineQueueNode :-

webcom.cgengine.Node@78dc4c

uid -4818b48d:1035bcff0d4:-7fa7

short_name webcom.nodes.core.NOTOp

cg_container main

- -

newInstructionInEngineModule :-

webcom.core.Instruction@c70b0d

operation webcom.nodes.core.NOTOp

- -

schedulerScheduleInstruction :-

webcom.core.Instruction@c70b0d

operation webcom.nodes.core.NOTOp

- -

loadBalancerQueueInstruction :-

webcom.core.Instruction@c70b0d

operation webcom.nodes.core.NOTOp

- -

instructionExecutionInEngineModule :-

webcom.core.Instruction@c70b0d

operation webcom.nodes.core.NOTOp

- -

engineQueueNode :-

webcom.cgengine.Node@bef361

uid -4818b48d:1035bcff0d4:-7fa9

short_name webcom.cgengine.ExitOp

cg_container main

- -

newInstructionInEngineModule :-

111

Appendix B — Event Trace

webcom.core.Instruction@5c98f3

operation webcom.cgengine.ExitOp

- -

instructionExecutionInEngineModule :-

webcom.core.Instruction@5c98f3

operation webcom.cgengine.ExitOp

- -

engineDeallocatedGraph :-

webcom.cgengine.DynamicCG@789869

uid -4818b48d:1035bcff0d4:-7fac

full_name main(-4818b48d:1035bcff0d4:-7fac)

name null

- -

engineQueueNode :-

webcom.core.enginemodule.RGExitNode@15e293a

uid -4818b48d:1035bcff0d4:-7fab

short_name RGOperator

cg_container null

- -

newInstructionInEngineModule :-

webcom.core.Instruction@1d840cd

operation RGOperator

- -

instructionExecutionInEngineModule :-

webcom.core.Instruction@1d840cd

operation RGOperator

- -

engineSendResult :-

webcom.core.Result@2f8116

source_ref null

data true

execution_time 0

resultee null

- -

backplaneSentMessage :-

EngineMessage: source = agador/143.239.211.35 module value: engine,

destination = agador/143.239.211.35 module value: top level,type = RESULT,

data = webcom.core.Result@2f8116

- -

engineResultSent :-

webcom.core.Result@2f8116

source_ref webcom.cgengine.Node@1f1680f

data true

execution_time 94

resultee webcom.ide.AnywareIDE[frame0,0,0,1920x1170,invalid,

layout=java.awt.BorderLayout,title=WebCom-G IDE,resizable,normal,

defaultCloseOperation=DO_NOTHING_ON_CLOSE,

rootPane=javax.swing.JRootPane[,4,36,1912x1130,invalid,

layout=javax.swing.JRootPane$RootLayout,alignmentX=0.0,alignmentY=0.0,border=,

flags=16777673,maximumSize=,minimumSize=,preferredSize=],

rootPaneCheckingEnabled=true]

- -

112

Appendix C — Unification Algorithm

This appendix contains the unification algorithm as used in the resolver outlined in Chapter 5.

Algorithm U(l,m)

main

if signs, symbols or number of terms inl andmdo not agree

then return (failure)

θ ← ∅

for each t subterm ofl

do



































































































































































































































s← corresponding subterm ofl

comment:Apply substitution to date over botht ands.

t′ ← θ(t), s′ ← θ(s)

comment: Iterate the recursion with a goal stack.

stack← {t′ = s′}

while stack, ∅

do











































































































































g← pop(stack)

u← Lefthand side ofg, v← Righthand side ofg

if u is a variable

then















Apply u→ v overθ and stack, occurs checking if desired.

θ ← θ ∪ {u→ v}

else ifv is a variable

then















Apply v→ u overθ and stack, occurs checking if desired.

θ ← θ ∪ {v→ u}

else ifv andv agree on function symbol and arity

then stack← stack∪ {vi = ui}i wherevi andui are the subterms ofu andv.

else return (failure)

return (θ)

113

Appendix D —TypesLogic Grammar

This appendix contains the SableCC grammar for theTypeslogic parser.

Package webcom.typechecker.parser;

Helpers

lf = 0x000a;

cr = 0x000d;

tab = 0x0009;

printable = [32 .. 127];

letter = [’a’ .. ’z’] | [’A’ .. ’Z’];

digit = [’0’ .. ’9’];

dot = ’.’;

Tokens

var_token = ’VAR’;

or_token = ’OR’;

and_token = ’AND’;

not_token = ’NOT’;

open_token = ’(’;

close_token = ’)’;

string_token = letter (letter | digit | dot)*;

blank = (cr | lf | tab | ’ ’)+;

comma_token = ’,’;

Ignored Tokens

blank;

114

Appendix D — Types Logic Grammar

Productions

type =

{parenthesis} open_token type close_token |

{constant} string_token |

{variable} var_token open_token string_token close_token |

{not} not_token open_token type close_token |

{and} and_token open_token and_list close_token |

{or} or_token open_token or_list close_token;

and_list =

{single} type |

{multiple} and_list comma_token type;

or_list =

{single} type |

{multiple} or_list comma_token type;

115

Bibliography

[FMQ04] Simon N. Foley, Barry P. Mulcahy, and Thomas B. Quillinan. Dynamic administrative coalitions with webcom dac. In

WeB2004 The Third Workshop on e-Business, Washington D.C., USA, December 2004.

[FQ02] Simon N. Foley and Thomas B. Quillinan. Using trust management to support micropayments. InProceedings of the

Second Information Technology and Telecommunications Conference, pages 219–223, Waterford Institute of Technology,

Waterford, Ireland., October 2002. TecNet.

[FQM+00] Simon N. Foley, Thomas B. Quillinan, John P. Morrison, David A. Power, and James J. Kennedy. Exploiting keynote in

webcom: Architecture neutral glue for trust management. InProceedings of the Nordic Workshop on Secure IT Systems

Encouraging Co-operation, Reykjavik University, Reykjavik, Iceland, October 2000.

[FQM02] Simon N. Foley, Thomas B. Quillinan, and John P. Morrison. Secure component distribution using webcom. InProceeding

of the 17th International Conference on Information Security (IFIP/SEC 2002), Cairo, Egypt, May 2002.

[FQO+04] Simon N. Foley, Thomas B. Quillinan, Maeve O’Connor, BarryP. Mulcahy, and John P. Morrison. A framework for

heterogeneous middleware security. InProceedings of the 13th International Heterogeneous Computing Workshop, Santa

Fe, New Mexico, USA., April 2004. IPDPS.

[GHJV93] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: Abstraction and reuse of object-oriented

design.Lecture Notes in Computer Science, 707:406–431, 1993.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1995.

[JPMP04] David A. Power John P. Morrison, Brian Clayton and Adarsh Patil. Webcom-g: Grid enabled metacomputing.The Journal

of Neural, Parallel and Scientific Computation. Special Issue on Grid Computing., 2004(12)(2):419–438, April 2004.

[Ken04] James J. Kennedy.Design and Implementation N-Tier Metacomputer with Decentralised Fault Toerance. PhD thesis, PhD

Thesis, University College Cork, Ireland, May 2004.

[MC] John P. Morrison and Ronan Connolly. Facilitating Parallel Programming in PVM using Condensed Graphs. Proceedings

of EuroPVM’99: Universitat Autonoma de Barcelona, Spain. 26-29 Sept 1999.

[MKPa] John P. Morrison, James J. Kennedy, and David A. Power.A Condensed Graphs Engine to Drive Metacomputing. Proceed-

ings of the international conference on parallel and distributed processing techniques and applications (PDPTA ’99),Las

Vagas, Nevada, June 28 - July1, 1999.

[MKPb] John P. Morrison, James J. Kennedy, and David A. Power.Extending WebCom: A Proposed Framework for Web Based

Distributed Computing. Workshop on Metacomputing Systems andApplications, ICPP2000.

[MKPc] John P. Morrison, James J. Kennedy, and David A. Power.WebCom: A Volunteer-Based Metacomputer. The Journal of

Supercomputing, Volume 18(1): 47-61, January 2001.

[MKPd] John P. Morrison, James J. Kennedy, and David A. Power.WebCom: A Web-Based Distributed Computation Platform.

Proceedings of Distributed computing on the Web, Rostock, Germany, June 21 - 23, 1999.

116

Bibliography

[MOH] John P. Morrison, Padraig J. O’Dowd, and Philip D. Healy. Searching rc5 keyspaces with distributed reconfigurablehard-

ware. ERSA 2003, Las Vegas, June 23-26, 2003.

[Mor96] John P. Morrison.Condensed Graphs: Unifying Availability-Driven, Coercion-Driven and Control-Driven Computing. PhD

thesis, Eindhoven, 1996.

[MP] John P. Morrison and David A. Power. Master Promotion & Client Redirection in the WebCom System. Proceedings of

the international conference on parallel and distributed processing techniques and applications (PDPTA 2000), Las Vagas,

Nevada, June 26 - 29, 2000.

[MPC] John P. Morrison, Keith Power, and Neil Cafferkey. Cyclone: Cycle Stealing System. Proceedings of the international

conference on parallel and distributed processing techniques and applications (PDPTA 2000), Las Vegas, Nevada, June 26

- 29, 2000.

[MPK] John P. Morrison, David A. Power, and James J. Kennedy. Load balancing and fault tolerance in a condensed graphs based

metacomputer. The Journal of Internet Technologies. SpecialIssue on Web Based Computing. Volume 3(4), 221-234,

December 2002.

[MRa] John P. Morrison and Martin Rem. Managing and Exploiting Speculative Computations in a Flow Driven, Graph Reduction

Machine. proceedings of PDPTA’99: Las Vegas, USA. June 28-July 1, 1999.

[MRb] John P. Morrison and Martin Rem. Speculative Computing in the Condensed Graphs Machine. proceedings of IWPC’99:

University of Aizu, Japan, 21-24 Sept 1999.

[QCF04] Thomas B. Quillinan, Brian C. Clayton, and Simon N. Foley. GridAdmin: Decentralising grid administration using trust

management. InProceedings of the Third International Symposium on Parallel and Distributed Computing (ISPDC04),

Cork, Ireland, July 2004.

[QF04] Thomas B. Quillinan and Simon N. Foley. Security in webcom: Addressing naming issues for a web services architecture.

In Proceedings of the 2004 ACM Workshop on Secure Web Services (SWS)., Washington D.C., USA., October 2004. ACM

Conference on Computer and Communications Security, ACM. To Appear.

117

