IMPLEMENTATION OF TYPE CHECKING IN WEBCOM

g

FI]V ‘B A N51

RR TAuGHT LET MY

A DISSERTATION SUBMITTED TO THE
DEPARTMENT OF COMPUTER SCIENCE
OF THE NATIONAL UNIVERITY OF IRELAND, CORK,
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE(COMPUTER SCIENCE)

Daithi O Crualaoich
September 2005

Abstract

This work approaches the problem of developing and impleimgmew functionality within the WebCom
system, while simultaneously preserving the integrityhaf software core of this system. This problem is
addressed within the context of developing type checkimgpstt for Condensed Graph execution, although
is not limited to this specific application. The key portianthe design and implementation of support
functionality to assist third-party WebCom development.

Much of the discussion concerns introducing new progrargmaradigms and practices, including those
of Aspect Oriented, Event-based, and Logic ProgrammingetsodOther areas covered in the methodolo-
gies and extension schemes suggested include the proeisiabCom metainformation, generic WebCom
invocation, the minimization of code pollution, the implentation of WebCom modules, and a module
framework including loading semantics.

The type checking example combines these various techieslatustrating how they support third-party
development of WebCom functionality. The results of thigkviaclude improved WebCom internals design,
facility to employ aspect oriented and logic programmingqpices, type checking, metadata notations, as
well as a wide range of actual applications from mobile phéledCom invocation tools to desktop WebCom
execution environments.

THE GRAYS HOPE TO WIN. STOP.
RAINBOW NEEDED URGENTLY. STOP.

— Subcomandante Marcos

Truth is a shining goddess, always veiled,
always distant, never wholly approachable,
but worthy of all the devotion of which
the human spirit is capable.

— Bertrand Russell

Apologies and Acknowledgments

am delighted to acknowledge and graciously appreciateahiag$tic assistance provided to me by my
supervisor, Dr. J.P.Morrison, and by the Centre for Unifiednputing. Their insightful advice has been
of great use in all aspects of this work. If | have failed toxemthis advice into a document equal to its
measure, then | am solely at fault.
| also want to appreciate my internal and external readeith&r eforts. And especially, | should like to
apologise for the typographical errors and stilted prosshizh | have subjected them. | have little téfer
in my defense, save to express the disheartening frusirtitai every draft revision made to defeat these evil
mistakes, only seemed to introduce new ones. My admiratiopdrfect prose has reached new levels.
This work has been funded by Science Foundation Ireland wtigdeoNational Development Plan.
Dedicated to the College. Thank you, most grateful thank yiato, for your Academy. May there
always be ivory towers and dreamy spires. Although, we ntighable to make do without Oxford.

Contents

Apologies and Acknowledgments ii
Contents iii
1 Introduction 1
1.1 Whatare Condensed Graphs? e e 1
1.1.1 TheNode Execution Triple e 3
1.1.2 Graphs e 5
1.1.3 Stemming and Port Strictness e 8
1.1.4 Condensation 11
1.2 WhatisWebCom? e 12
121 PastandFuture Trends e 14
Chapter Notes e e 14
2 Information Framework 15
2.1 MetaInformation Motivation 15
2.2 ParallelswithBeanInfo 17
2.3 UMLOUne e e e 18
2.4 (Potential) WebCom Applications of the Informationfework 22
2.4.1 Documentation Provision. e 23
242 TypeChecking e e 25
2.4.3 Submission Framework. e 25
Chapter Notes e e 34
3 Aspects and the Event API 35
3.1 Introductionto ASPECES 35
3.1.1 Crosscutting CONCEINS o o v vt e e e e e e 37
3.1.2 Join points, Pointcuts and Advice e 38
3.1.3 Example Aspects e 40

3.1.4 AspectUseinWebCom 43

3.2 EVentAPI . . . e 44
3.2.1 Aspectbasedeventsystem 45

3.2.2 EventAPlImplementation 47

3.2.3 Applications e 50

3.24 Finalremarks e 51
Chapter Notes e e 52

4 Module API 53
4.1 Module API e 53
4.1.1 Philosophy 54

4.1.2 Design 58

4.2 Example Modules Employing the Module API Architecture.. 64
4.2.1 StatisticsModule e e 64

4.2.2 SysTray, IDE Bridge and OtherGUIModules 67

4.2.3 BeanShell e 70

424 Future DIirections e e 70
Chapter Notes e e e 72

5 Logic Programming in WebCom 73
5.1 ResoIVer e e e e 74
5.1.1 LogicElements 74

5.1.2 UnifilerCode 77

5.1.3 ResolverEngine e 78

5.2 Example: TypingLanguage e e 85
5.3 Example: Security ReductionRules 90
Chapter Notes e e 92

6 Type Checking 93
6.1 Parsero e 93
6.2 Runtime Type CheckingProblem, 96
6.3 Designtime Type Checking e e 99
6.4 Substitution Reconciliation 102
6.5 Type CheckerModules e 103
6.6 Finally... 104
Chapter Notes e e 105
Appendix A — NodeInfo Example 106

Appendix B — Event Trace
Appendix C — Unification Algorithm
Appendix D — Types Logic Grammar

Bibliography

109

113

114

116

Introduction

his dissertation concerns type checking in the WebCom imetgation of the Condensed Graph
model. It also variously deals with software module destba,use of aspects in event driven pro-
gramming, the specification and execution of task desontiand other topics that may also arise.

It is best to begin here by describing the Condensed Graplehaod the WebCom implementation in
outline at least. Exhausting detail will be provided at tipprapriate points in the following chapters, so
herein it is preferable to outline the broadstrokes of thademsed Graph mission.

The following chapters, on the supporting Information Fearark, on the event system, and on module
organization are somewhat new compontofsWebCom designed or improved to meet the type checking
implementation dficulties in a uniform and generalisable fashion. They regremteresting adventures
in their own rights also and merit the careful study. Thissdigation concludes with an examination and
implementation of the core concern, the new type checkirsgesy. So toward that end, this dissertation
begins by considering and outlining the Condensed Graptemod

1.1 What are Condensed Graphs?

The Condensed Graph (CG) model is a computation paradigedbas directed acyclic graphs (DAGS).
While there may be superficial similarities with existing DA@sed workflow packages, and although work-
flow is an application area in which Condensed Graphs exagldénsed Graphs anet simply yet another

1.1 What are Condensed Graphs?

workflow solution. This view neglects particular featurdgdtee Condensed Graph model that conspire to
produce a highly flexible and applicable programming emvinent.

§1 Granularity. <A treatment of the wide applicability of the Condensed Grapidel, and an outline of the various levels of
operation granularity supported thereby. Examples oftexgsapplication platforms

As the Condensed Graph system was initially designed tosstipprallel computation, the original target
architectures were larger multiprocessor systems. Howgixen the aggressive adoption of parallel tech-
nigues throughout the spectrum of computer design, the €t Graphs model can be comfortably applied
to systems at all levels in the computer architecture fo@drghHrom embedded systems to Grids.

The node object constitutes the fundamental paralleksabftware artifact in the Condensed Graphs
model. Nodes themselves are in fact just containers for ldraents that define the desired computational
task. One of these elements being the operation componésnecantrol of the parallelisable task granu-
larity possible. Key to the Condensed Graph model is easyanerful accommodation of operations with
variable granularities. Grain sizes ranging from the alito the vast and time consuming are compatible.

This flexible grain size is both practical and feasible alSondensed Graphs can and have been applied
in Field Programmable Gate Arrays (FPGAS), in mobile andeahdied devices with J2ME, in desktop and
serve systems, in networks of desktop systems, in Beowadtets and in Grid Computing.

Operations themselves need not be of overt numerical catipntcharacter either. Scheduling, work-
flow, security based, information organisation, databemestctions, middleware invocation, expense ac-
count authorisations or literally any possible computatesk or combination thereof is suitable.

§2 Parallelism. <An examination of the role of parallelism in the developnzemt operation of the Condensed Graph medel
The flexible operation grain size is just one aspect of thalfgism support provided in the Condensed
Graph framework. More interesting than nodes themselgdsyw nodes can be combined.

The Condensed Graph model allows for nodes to be scheduietperative, lazy, or eager evaluation
modes, or uniquely, in any combination of these modes. A caatjpn designer has precise facility to
specify how individual nodes are to be computationally exed. For example, a designer may indicate
certain nodes that arrange a seldom used computation aeeetxebuted lazily if required, while at the same
time, the designer can indicate that the critical path ofgregph based computation should be performed
eagerly in order to minimise the total execution time of thepdp.

Crucially, this blending of speculation with conservatdseecution is garbage free. The model semantics
provide for the automatic andfeient removal of unrequired speculation and associatedjun

§3 Paradigm. <Discussion of the Condensed Graphs model from the perspaaftbrogramming paradigms and methodologies
In so far as the Condensed Graph model is language indegeaddrtombines the imperative, lazy and eager
computation models, it forms a separate computationaljgra Its implementation as an augmentation of
existing programming languages mirrors that of Object @&d (O0) systems.

1.1 What are Condensed Graphs?

The primacy of the intrinsic graph representation shoul@imghasised since it distinguishes the Con-
densed Graph paradigm from other augmentative paradigomsasuthe OO model. The Condensed Graph
model is inherently wedded to the graph executable artifhetreas the OO model arranges computation by
client-server message transactions. The structure of aex@@ution is not an explicit entity in the paradigm
in the same way as a Condensed Graph is central to the Conldénsgh model.

There is also large variation in how the Condensed Grapldjgarais applied to arrange computation.
Condensed Graphs are often the main execution mechanigimgda parallel or serial computation. How-
ever, they are also often used as middleware “glue” to |l@esdistinct systems into collaborative execution.

§4 Word of Warning. <A cautionary tale about the Condensed Graph learning curve

It ought to be noted that the flexibility of the Condensed Grapstem comes with a price, not necessarily
paid in computational overheddThe initial exposition of the Condensed Graphs system amchéchanisms
by which it acquires much flexibility are a typical stumblibfpck for novices. Much of this learning curve
can be attributed to basic lack of familiarity with DAG basggstems in general, but it remains true that
learning the correct mode of thinking in Condensed Grapigdefoes require some time.

This is not especially surprising considering that novisera face similar dliculties with other computa-
tional paradigms such as OO, Aspect Oriented Programmunggtlonal Programming, and Logic Program-
ming. As with many of these technologies, the implementatibintuitive tools to support the development
process is essential to alleviating initial obstacles toptidn. Indeed, tools such as Condensed Graph visual
designers and debuggers are the focus of keen current gavehb.

§5 Section Map. <A brief guide to the remaining portions of this chapter

What follows constitute aféort to provide a sfiiciently detailed operational description of the Condensed
Graph model for the purposes required in this dissertatidany important implementational and machine
details are neglected. The reader is referred to other esfioc more complete understanding of the machine
specifications. [Mor96, MRb, MRa]

1.1.1 The Node Execution Triple

Computation is engineered by the aggregation of a computtiriple consisting of an operator with which
to act, operands upon which to act, and destinations to whigltomputation output is propagated. Nodes
deal precisely with this conjunction and can be thought cfrapty socket boxes onto which these separate
computational elements are attached. Nodes exist witldiphy, the arcs of which indicate the mechanism
by which the computational elements are delivered to nodes.

Once the execution machine has conspired to present artapdna correct number of operands and at
least one destination to a node, the node is then capablégfér reducing.) The firing of a node, scheduled
in some fashion by the execution machine, triggers the éxercaf the computation described by the node.
The result of this computation is then forwarded to the iatid destinations.

1.1 What are Condensed Graphs?

~~

Operand Ports — - Destination Port

Operand values or stemmed Destinations arrive or are

equivalents arrive here. / statically assigned here.
TOperator Port

Operators arrive or are
statically assigned here.

Figure 1: The Anatomy of a Node.

We examine the principle components of a node below in motaildeSee Figure 1 for a graphical
representation of a node and the ports at which computdtibements are attached.

§6 Operator Ports. <Description of the operator port and its role in the Condeh@raph modet

The actual contents of a node’s operator port depend on theebsed Graph model implementation, but
might for instance be a function pointer in Cllathod object in Java, or a lambda expression in a functional
programming backed Condensed Graph implementation.

There is nothing particularly special about this port. tatents are software artifacts just the same as the
contents of the operand or destination ports that will beklesd shortly. This observation highlights that
the output of node computations may be used as operatorsoajubhas operands to subsequent nodes.

Although dynamic operators are not typically currently éogpd in Condensed Graph applications, they
represent a powerful computational technique. Dynamicaipe generation share many parallels with the
expressive realisation of functions as first order objettiinctional programming. There is current work
on the use of dynamic operator generation to produce dathastes natively in terms of graphs. These
datastructures inherit many benefits from the graph model.

§7 Operand Ports. <A discussion of the operand ports and their role in the CosderGraph system
Each node has one or more operand ports, according to th@#tiite node’s operator. Operand ports are the
attachment points for the input data of the computatiomgletrepresented by the node.

It is not entirely clear, nor does it really matter how a nodguares the correct number of operand ports
for its operator, especially in the dynamic setup. It canrbagined that the operand port configuration of a
node is dynamically updated when an operator arrives atgheator port.

Operand ports are zero origin integer indexed for legacyempntation reasons.

§8 Destination Ports. <A discussion of destination ports and their role in the Carsgel Graph system
The final constituent part of a node is a single destinatian @destination ports contain references to the
operand ports of other nodes and indicate where the nodeutatign results are sent.

1.1 What are Condensed Graphs?

As before, the contents of destination ports are also regatware artifacts of the implementation
system. Unlike the case of dynamic operators, dynamic riigtins are likely of less utility to the end
programmer and as such, destinations are usually assurbedstatically assigned.

Because of this assumed static assignation, it is tempbingetv destination ports as providing an arc
to an operand port over which node computation results pHsis. view is unfortunately supported by the
standard graphing notation that will be introduced belovelgful as this picture appears, it is a deceptive
view of destination port operation. There are specific s¢imaations, such as stemming and grafting, that
can be applied to destination ports but which simply do nettaconsistent interpretation in terms of the
result value arc path view. It is a common error to miscomstrestination ports as simply one end of an arc
over which results travel.

A node possesses a single destination port. This is not ttheayodes can only forward their compu-
tation results to a single other node. Rather the softwanéeots of a destination port are of a Composite
[GHJIV93, GHJV95] pattern type and can be used to refer to ndgstinct graph locations. Note, however
that only a single destination location is required for aetalbe fireable.

Thus far, single valued operations have been implicithuassd. Whilst this is required by the current
graph model, there is some ongoing work to extend the modsupport multiple valued operators. To
this end, multiple destination ports, one per output, ageired together with more complicated node firing
criteria. Regular multiple output nodes are not be of camterein.

Before leaving the topic of multiple destination nodes, itstnbe noted that there are certain such nodes
permitted in the basic model also. These nodes, called Eshade special purpose nodes that play a specific
role in memory allocation and in the condensation processesé are the only multiple destination nodes
permitted in the basic model.

1.1.2 Graphs

Arcs in the Condensed Graph DAG computation representat@induced from the port contents of nodes
in the graph. A destination port is connected to an operamidwith an arc if the operand port is one of the
destinations on the destination port. Operator and de&imports are also the endpoints for incident in arcs
that convey the node operator and destinations respectiltic operators and destinations are represented
as primitive values on these arcs.

The graph topology thus constructed must be that of a DAGIi€yis not permitted.

§9 E and X nodes. <Special purpose memory allocation and graph delimitingesed

There are two special node types, denoted Enter(E) andgxXiifie E node represents the graph computation

entry point and has as many operand ports as operands tadbed@aph computation. For example, a graph

to sum two integers will have two toplevel operands, and s@titresponding E node also has two operands.
An E node has as many destination ports as it has operand pbgperation of the statically assigned

operator is trivial, being a simple copy. On E node execuwtadh operand is copied from its operand port to

1.1 What are Condensed Graphs?

the destinations contained in the corresponding destimgidrt of the E node. So the first operand is copied
to the destinations in the first destination port, the seap®tand to those in the second destination port, etc.

E nodes also have a memory management function in the masaimantics. The triggering of an E
nodes is a cue for the execution machine to step into a newigeror stack frame. Furthermore, the E node
is also a marker node for the condensation process.

X nodes possess a single operand and a single destinatipmgg@ther with a static operator. On execu-
tion, the X node copies the input operand to the output datstins. The idea is that this output constitutes
the output of the whole graph execution. So whereas the E mepuiesents the graph entry point, the X node
represents its exit point.

In terms of machine semantics, the X node cues the machineaitbdate and clear the graph execution
or stack frame. It is also the concluding marker node for thedensation process.

§10 Example Condensed Graphs. «lllustrative example Condensed Graphs and explanations

Consider the graph in Figure 2, which describes a computatith two inputs and a single output. This
graph functions to sum the two, presumably numiigyut parameters and pushes the summation value to

0 0 0 @ 0
_—"1 1 5

Figure 2: Example Condensed Graph.

the output.

Note that Figure 2 incorporates the convenient shorthaactige of writing static operator names inside
of nodes, rather than indicating passage via the operattr po

As before, caution is required when considering the ardsthanect destination ports to the operand ports
they contain. There is a strong misconception that outsulte pass over the destination port(commonly
incorrectly referred to as an “output port”) and along thetarthe endpoint operand port. The viewer must
always be aware that this interpretation obsfucates tHeneehanisms of the destination port.

It will be seen shortly that destinations may be strippedfreodes by the stemming process. Although
there is a graphical notation for this process, it needs terbphasised that the plain arc notation obscures
the node stemming facility. Misunderstanding the destimaport semantics is a common error made by
newcomers to the Condensed Graph system. Unfortunatebtdheard graph notation fails to highlight the
special status of the destination port.

It is instructive to consider the reduction of nodes in tharegle graph and the illustration of operand
dataflow in Figure 3. Suppose the E node operand ports ardgtegwvith the numeric valuesandy at the
commencement of a graph execution. Itis not of terrible eaméor now how the toplevel actually populates
these inputs.

1.1 What are Condensed Graphs?

X
\G}:X:@ox+y
y/ Y .

Figure 3: Example Graph Datapath

Initially, only the E node contains a full complement of camgtional triple elements and is the only
node capable of firing. Note that the Plus node is incompletatbise operands are missing. This is despite
what the diagram may suggest on casual inspection. Sigitad X node is incomplete.

When the E node fires, its destinations are populated withniiet ioperands. In particular, this means
that the Plus operand ports are populated, making the Plls itgelf fireable. When the Plus node itself
fires, its destinations are populated with y, making the X node complete. The firing of the X node pushes
X+ y onto the toplevel output.

This example illustrates a computation that is imperativaature. This is a consequences of the linear
graph structure. The real value of Condensed Graphs corneswhen there are multiple execution branches
possible at a given moment as in the case of Figure 4.

Figure 4: Example Condensed Graph II.

Following the triggering of the E node in Figure 4, both of fles nodes are complete and ready to be
executed. Any order or form of parallel or serial executiochegiuling can be employed to evaluate nodes that
are not strictly ordered in the computation DAG. Nodes repn¢independent computational triples, whereas
the graph determines the data dependencies present.

1.1 What are Condensed Graphs?

1.1.3 Stemming and Port Strictness

§11 Stemming. <Introduction of the Condensed Graph mechanism for influentiie character of a computatien

Stemming is the design time process of temporarily remoaidgstination port’s contents so as to prevent the
node containing that port from firing. The destinations aseramoved completely, the mechanism simply
prevents the node from firing until some later computatiglieily requires it to fire. The reverse operation,
that of replacing destinations, is called grafting.

Where before stemming, a destination port is occupied, sfégnming it helps to think that the operand
ports to which the destination port points have been occubjea composite operand value. In this way,
although one node is stripped of its destination port elg¢n@her later nodes are populated with operand
port values.

Stemming facilitates lazy evaluation by automatic graftiThe grafting process can be triggered on a
stemmed node by the firing of nodes that depend on the restiiab$temmed node. Stemming is also most
primarily used in conjunction with recursion and IfEl nodeswill be seen shortly.

1
o
AO &
Q
2

Figure 5: Example Stemmed Node.

Consider the example in Figure 5, the purpose of which is tdtothe input parameter. The graph first
performs a comparison and will then only compute the mudtition if the input parameter is nonzero. This
example is deliberately contrived in order to illustrate fiemming process.

The previously unseen operators function as follows. Exjuampares two operands for equality, re-
turning an indicative Boolean result. The Mult operationltiplies the two operands. The IfEl operatfon
achieves the basic branching in the Condensed Graph sy8perand zero is a Boolean indicating which
operand to use as output, operand one if true, operand tatsé.f

1.1 What are Condensed Graphs?

Aside from the new nodes, the main point of interest is thmstag of the Mult node to the IfElI node.

It is very common to stem IfEl branches in order to requirérttazy evaluation. To all purposes here, even
when the E node is fired, the Mult node will remain incomplétBus, it is assured that the multiplication is
not done eagerly ahead of the equality test. During exetuti® equality test is executed first, then the IfEl
triggered. Note that the IfEl node is completed once the Bguade has fired but that the Mult node is still
incomplete without its destination.

The IfEl node operation depends on whether the contentsdhfiut selected operand port are primitive
or not. In the case that the contents are primitive, the vialsanply copied to the output destinations. If the
selected operand port contains a stemmed node, this stemmdeds “passed through” the IfElI node. That
is, the destinations of the stemmed operand node are rewtdatremove the IfEl node and replace it with the
destinations of the IfEl node. Furthermore these destinatmust be arranged to have the operand node as a
stemmed operand. This ensures the stemmed node is propeirgated to the destinations of the IfEl node.

In practice, the implementation is not so involved. Sinae $kemming mechanism is implementation
dependent, it can be designed in such a way as to easilytdéeithis scenario. For instance, the WebCom
system simply moves the referenced node to the operand giotte destinations, infeect treating the
stemmed node as a primitive vafue

The style of processing used by the IfEl node tends to be @lpln general, a node with a stemmed
operator usually coerces the triggering of the stemmed mm@eoduce a primitive value. This coercion is
done automatically via the use of port strictness and coegcafting.

The behavior of the IfEl operands on the non-Boolean opepantd can be compared with the behaviour
of currying in functional programming. Although, the comigan is entirely superficial, the IfEl does per-
form a basic higher order function that does not require kadge of the actual operand contents, and as
such does not require the explicit computation of theseegalu

§12 Port Strictness. <Port strictness tags are a method to automatically coereg Eomputations

Operand port strictness and the stemming process areyclogedd. Operand ports may be either strict or

nonstrict, indicating whether primitive values are reqdion the port for the execution of the node operation.
Although strictness is associated with operand ports ofntiee entity, the artifact really depends on the
operation not the node.

A strict port requires a primitive value. A nonstrict porincake a primitive value or a stemmed node. In
the IfEl node example, the Boolean test is a required primnidiperand in order to decide which alternative
branch to use. Therefore this operand port of an IfEl nodet iImeistrict. The contents of the non-Boolean
operand ports need not be primitive. Since the IfEl openasipecifically processes stemmed nodes, these
non-Boolean operand ports of an IfEl node should be nomstric

§13 Coerced Grafting. <Explanation of the use of port strictness to coerce grafting
Stemmed nodes on strict operand ports of otherwise fireanlesxmust be grafted in order to permit firing.
This grafting returns the destination of the stemmed nodkenaay cause it to become complete, or cause it

1.1 What are Condensed Graphs?

to coerce completion from its stemmed operands. The firirtgisfnode then populates the original operand
port and facilitates the triggering thereof.

This coerced grafting is performed automatically by theceten machine as required. Essential grafting
involves grafts that are required in order to move the commri forward. There is also the possibility of
using discretionary grafting in lazy graphs to convert l@pynputations into eager computations and to
throttle computation. For example, if during an executitve, machine determines it can avail of additional
computation resources but that there are not enough firealdes to maintain useful throughput, then the
execution machine can discretionary graft stemmed nodesdier to raise the amount of fireable nodes in
the graph. Since fireable nodes correspond directly to @aple parallelism, discretionary grafting is a
parallelism throttle.

Stemming and grafting can be viewed as inverse operati@sitbve a single entity between destination
ports and operand ports. At times, it is more beneficial teelhis element on the destination port location in
order to push the computation forward aggressively. Atotinges, it is more useful for this entity to reside
on operand ports and to encourage little additional contioumta

@

Figure 6: Example Stemmed Node II.

Consider the example graph in Figure 6 that adds two to th& impway of a stemmed Plus node chain.
The execution proceeds by firstly firing the E node and pomgahe input of the first Plus nodé.Due to
stemming, the first Plus node i®t complete. The only complete node remaining is the seconsl iRide.
But since both node operand ports of the Plus node are strécsecond Plus node will have to graft the first
Plus node in order to fire.

See Figure 7 for the graph arrangement at this point. Thecedagraft will make the second Plus node
incomplete, but will complete the first Plus node and thus@més execution in a lazy fashion. The first
Plus node then fires and populates the second Plus node dgesein The computation is completed in a
straightforward fashion from this point.

10

1.1 What are Condensed Graphs?

Figure 7: Partial Execution of Example Stemmed Node IlI.

1.1.4 Condensation

Condensation is the recursive technique of embedding grapimodes within other graphs. A graph is con-

verted to an operator and placed on the operator port of a pde.rOn triggering, this operation evaporates

into the condensed graph description as a graph and cortheaperands and destinations of the node to the
new graph. This operator view of condensation and evapor&istrictly operational and does neglect some

semantic details that are not of concern hére.

§14 Condensation Example. <An example of the condensation and evaporation processes

Consider the example recursive graph in Figure 8 which impl&ts recursive base two exponentiation. For
toplevel operand, the graph returns*2 The recursive computation is maintained in the condensd® P
node. On execution, this creates a new instance of the Fggir@ph in place. See Figure 9 for an illustration

of the unrolled computation.

Figure 8: Example Recursive Graph.

11

1.2 What is WebCom?

Figure 9: Unrolled Example Recursive Graph.

§15 Memory Problems. <A note on the memory issues involved in condensation

Examination of Figure 9 raises the question fifoeent memory allocation. Each time an E node is passed
a full new activation frame or execution frame is required.deep condensation sequences there will be
an Condensed Graph version of recursion overhead. Theive avork on deploying &icient iteration
schemes in the Condensed Graph implementations to alethat current diiculty in using Condensed
Graphs to do large scale iterative computation.

1.2 Whatis WebCom?

WebCom is the primary triple manager (TM) or execution maeHbr the Condensed Graph system. It is
currently in its second major development incarnation armking prepared for open public release. As much
of this dissertation details various WebCom internalsy @nbrief introduction is outlined below. More in
depth discussions are saved for the appropriate lateriocsas

§16 Condensed Graph Triple Managers. <The specification for execution machines in the CondensagiGsystem
A triple manager is a machine for the processing of Conde@aghs into instructions and their subse-
guent execution. This machine must maintain graph memdsasttactures and identify executable nodes in
managed graphs. These executable nodes must be marsbeléaanputation, scheduled, executed and the
results thereof propagated.

The Condensed Graph system makes no demands of the sclgealuérecution order save executions
must respect the graph topology. At any point a number of siotkey be fireable, but the triple manager has
complete discretion as to the node firing order.

12

1.2 What is WebCom?

In addition to basic node scheduling, triple managers mépwoally implement features like the throttling
support as described by speculative grafting, the exchafhigessages and work with other triple managers,
additional security features, or any other features thaveldper may find interesting or useful. There are a
number of existing triple manager implementations inalgdievelopment simulations, sequential program-
ming triple managers, PVM parallel triple managers and WehC There is also developed research on
hardware triple manager implementations.

§17 WebCom Module Core Architecture. <The main Condensed Graph execution machine

The module architecture of WebCom will be the focus of dethitonsideration later, but a cursory exam-
ination of the basic modules here will help outline the mdgatures of WebCom. The seven main core
modules in WebCom are the Backplane Module, the Connectianader Module, the Engine Module, the
Fault Tolerance Module, the Scheduler Module, the Load iRatey Module and the Security Module. Each
of these is covered briefly in turn in the following paragraph

All WebCom modules are planted in a Backplane Module. Thigfions as the main bootstrap module
and is almost entirely managerial in purpose, its only othain role being the internal routing of module
message communications. The Backplane Module is considsra module for implementation convenience
rather than because it has inherent module status. Indistakitally the Backplane was not a module.

WebCom is triple manager software that coordinates thdlpbeaecution of Condensed Graphs. Collab-
orating WebCom instances communicate over regular netamcket interfaces via their Connection Man-
ager Modules. WebCom only loosely enforces network topoleigh a parent-child relationship and can be
used in a wide range of P2P and tree configurations.

The basic triple manager functions of WebCom are containgtle Engine Module. There have been
numerous Engine modules written to support WebCom and gitpthe fundamental triple manager com-
mands and instruction sets to be extended. For example,aheEngine Modules to interface WebCom with
middleware solutions such as COM, DCOM, EJB and Corba. Wabself also operates a middleware
solution leveraging the named current middleware solstion

WebCom maintains recoverability and tolerance in the fdceetwork faults via the use of the Fault
Tolerance Module. This module journals work exchanges gops#/ebCom computations in order to repair
lost communications.

The Scheduler and Load Balancing modules conspire with tiggnie module to schedule nodes into
instructions and order them for execution. The Load Balahas a role in arranging an even distribution of
work between collaborating WebCom machines.

The final essential module for a WebCom configuration is a Sgddodule. Security has been a built in
component of the WebCom system from the earliest stagesattherity of a WebCom machine to execute
a particular instruction or action is always vetted by theusigy module. There is an extensive authentication
system. [FMQO04, QF04, FQM02, FQO02, FQ@!, QCF04, FQMO0O0]

13

Chapter Notes

1.2.1 Past and Future Trends

§18 Where from and where to. <The origins and future directions for the Condensed GéfsthCom projest
The Condensed Graph was originally introduced in the dattissertation by J.P. Morrison[Mor96]. Devel-
opment of Condensed Graph and WebCom tools has been the sdumemerous funded projects by Science
Foundation Ireland, Enterprise Ireland, and the Natioraldlopment Plan of the Irish Government. Over
the course of these projects a large amount of research baglbeeloped. [JPMP04, MKPa, MKPh, MKPc,
MKPd, MPK, MC, MP, MPC, Ken04, MOH] The main WebCom systemupsorted by other research such
as the Cyclone cycle harvesting system, the Anyware teolied and the security framework for WebCom.
In the short term, the next probable developments in the 8wt Graph model include loop unrolling,
iteration optimisations, multiple outputs, datastruetuand nondeterministic path merge operations. Re-
garding the WebCom technology, it is under active develagrrepreparation for public release. Current
development works includes node targeting, debuggingatygnd Grid information management.

Chapter Notes

1The Information Framework and the aspect based internal eystems are entirely new. The Module API develops some previou
work in the WebCom software but contains new elements, nptalthe use philosophy of modules and in the extended examples.

2The automatic removal of unwanted speculative computatigresents a markedfitrence between the Condensed Graph system
and some other workflow type systems. Clearing bad speculateproblem that has plagued other workflow systems in the past

3Comparing Condensed Graphs to the Object Oriented paradigmits in a weak analogy because the Condensed Graph model has
an intrinsic graphical representation of computations taatbe viewed as a program. The parallel notation of exeaitdliL in the
OO paradigm is a strictly weaker concept.

4The Condensed Graph model must of course incur some inevitdikiomal computational overhead versus traditional comporn
methods. Although the extent of this overhead is not cleaniyeustood at this point, based on profiling and benchmarkiegetare
some reasonable grounds for optimism in this regard.

50ne advantage in incorporating multiple valued operatotsérbasic model is that this would partly uniformise the treatnoé E
nodes. In the multiple output operators context, E nodes tloeqire specific operation semantics as they do in the cumedel. E
nodes would still require special treatment as part of theinorg and condensation process functions, though.

6The input operands in the example graph of Figure 2 need nessadly be numeric. The input operands need just be comgatibl
with whatever operation is denoted by the Plus operatiorpeDding on the implementation of this operation, any inpuesymay be
permitted. For instance, if Plus is implemented using thedperator in Java, then the inputs might possibly be Strirjgab.

“It should be noted that IfEI nodes have a special status imtbeution machine mechanics. They are triple manager opesatiu
must always be executed by the local machine.

8The use of stemmed nodes in operations does involve some ARtlecatsons for the operation programmers however. To handle
the circumstances of stemming, the operation writers need podwéded with an API to process stemmed nodes. As it standsirige
the stemmed node as a primitive value unties a lot fifadilties at the IfEl node, but there are cases when a noderwrilevant to
treat a stemmed node operand in a nonprimitive way. In redligyptactice of writing node operations is does not requiiereace to
stemming in nearly all cases. Consequently, it has been pessidevelop the rare cases involving stemming on a per cage bas

9Note that initially in Figure 6 the second Plus node is alseefile. Although it is semantically undesirable for a nodereobfefore
the E node of its graph, this may be a practical machine optimaisat

10gpecifically, the H and V graph definitions of condensatianrast of concern herein save to mention that the E and X nodes for
delimiting markers for the condensation tree.

14

Information Framework

he Information Framework is a new component of the WebCorterysdesigned to implement a

step in the production of a supported type system within tle@ém realisation of Condensed

Graphs. The information requirements in this typing agtian illustrate the value of general pur-
pose metainformation mechanisms within WebCom.

The prototype Information Framework is outlined below andprises of a component augmentation
of the present system that may be extended to support otimetyping applications. Also discussed are
examples of metainformation objects, together with pamrind realised applications of the information
system. Note that this framework is an enabling componert,its primary utility is in the realisation of a
strict separation between typing data and graph data remesons within WebCom.

2.1 Meta Information Motivation

At present, there is a lack of both available runtime and teeficne documenting data for Condensed Graph
elements and WebCom modules. The Condensed Graph elemaststof the many software objects used
to represent Condensed Graphs within WebCom, namely npdes, operands, operators, graphs, and so
forth. The WebCom system operates on these elements as t@dihgalriple Manager specifications.

These objects have a solely execution orientation in thegt &ine designed and optimised to enable Web-
Com to dficiently perform Triple Manager actions. Type checking teimded as a strictly optional operation

15

2.1 Meta Information Motivation

and as such should introduce only a limited execution ow&th&he implementational transparency of the
meta object notations to the existing WebCom system is akay aequirement.

Efficiency and transparency concerns notwithstanding, itriféumore essential that these software ar-
tifacts be able to educate other objects as to their atgthand capabilities. It is precisely this facility that
provides for the unification of distinct application areaishim the WebCom system of software. For in-
stance, the exportation of typing information from the celements, upon which Triple Managers operate,
can have additional uses outside of the type checking systefact, the typing information is currently used
to provide a rudimentary documentation system in the stiilieaDoc. This documentation system could be
incorporated, in automated form, into other tools in the G suite, a point that is further discussed with
reference to enduser development support later in thistehap

The existence of a metadata resource within the WebCommmergnvironment is also of use to future
developers. The intention being that the Information Fraork will provide a basis for a more expanded
metadata system. The exact constituent data elementssofutinire system would depend on developing
requirements within WebCom research but the Informatianfawork will implement a structure allowing
for the straightforward adoption of new metadata streandscategories.

At present, new metadata requirements necessitate oViedhaare WebCom software. The type check-
ing application will serve a wider design purpose if it pide$ a basis for future metadata augmentation and
minimises refactoring tasks. From a design perspectiegritormation Framework facilitates a cleaner core
architecture, in that metadata notations may be used teaEhequirements which previously might have
been implemented in the core software, incurring unwelcsafevare coupling.

In spirit, the Information Framework compares closely teal2oc annotations, although in practice it
is much closer aligned with the Java BeaniInfo system. Thadweork is intended to function in a manner
akin to the JavaDoc support in the Java 1.5 release. ThislJavalease includes an updated JavaDoc tool
incorporating many improvements trailed in the XDocletjpct For instance, developers can implement
their own JavaDoc tags or annotations and extract metacatathese custom annotations at runtime via the
use of a query API. Analogously, it is proposed here thatlggapodes and other elements export available
metadata to other portions of the runtime environment vian@le query interface.

Itis also conceivable that metadata items may be dynamichEgurposes of type checking, static nota-
tions sutice, but in more general purpose system it might be advantiafiet facilitate metadata mutation.
Such mutation might consist of attribute value mutation fomodifications to the metadata schema itself.
Attribute value mutation would be straightforward to immplent, the main considerations being the mutation
mechanism API. Metadata schema mutation is more involvediags not feature in this prototype.

From a pure object oriented perspective though, attribafieevmutable metadata compromises data value
encapsulation. The mutable value metadata design enasugadistinction between graph objects used for
graph execution purposes and their descriptive peer cquarts. In the present WebCom implementation,
graphs and nodes are monolithic entities containing botiveaand passive portions. Picture this as core
graph execution objects, containing the active data iteareund which are wrapped peer objects containing

16

2.2 Parallels with BeanlInfo

passive and descriptive values. Mutable metadata woula im@ang active data items in the wrapper peer.

The proposed Information Framework will help in separatimgse passive and active concerns, but will
also have a wider design benefit in minimising class poliutiDespite a sometimes task oriented develop-
ment, the WebCom system design possesses a strong idéetiak set of classes. However, these core
elements are very vulnerable to feature creep, somethinghwithe Information Framework as outlined here
can help discourage. In addition to providing an altermato/core class extraneous functionality pollution,
refactoring €orts can leverage this metadata system to cleanse curmenpctiution. The use of notational
based constructs will also support superior design in &usystem augmentation.

As a final motivating remark, note that the actual prototypplementation incurs only a small cost. From
this perspective, even if the system is underutilised tieeséll a neglible penalty in its incorporation.

2.2 Parallels with Beanlinfo

While the design intentions of the Information Frameworkrotithose of the newer JavaDoc annotations,
the actual implementationftiers somewhat. The Information Framework follows the immatation model
of the Java BeanInfo API, one of the APIs making up the JavaBeaponent object middleware system.

A JavaBean is a Java object written according to a certaitefireed format, so enabling the automatic
discovery of object attributes and events sourced withé dibject. The Beaninfo framework provides sup-
port for this data to be otherwise specified and populatedutih the use of 8eanInfo object. Given that
Java reflection capabilities can provide default marsti@ianInfos, JavaBean developers themselves do
not typically use Beanlinfos directly. Nevertheless, thpian remains available. Whilst the automatically
generated@eanInfos are usually dticient for the demands of JavaBean applications, it is thel\wetien
BeanInfos that provide the implementation model for the prototypd@m Information Framework.

JavaBeans are associated wBtanInfos on a per class basis, a design mirrored in the Information
Framework by associating WebCom graph execution objedtsaniInfo object on a per class basis. This
minimises overhead in that instantiations of a particutapf element class can share a commafo object.

Further mirroring the JavaBean model, there is provisianafistomatic population of WebComnfo
object attributes via reflection. In fact, JavaBean matistigetues and reflection schemes suited WebCom
Info object reflection so satisfactorily that they were borrowtt minor modification. This lending allows
users of JavaBeans to immediately recognise correspomdincepts in the WebComnfo system and to
leverage an existing view of the JavaBean system into aalimiew of the WebCom Info system.

The two main reflection cues employed are a no-argumentrmtst for initial blankInfo population,
and attribute element reflection in the base class to pralédeription data for thénfo class. Since graphs
elements do not currently source events in their operatiodats, there is no analogue for JavaBean events
in the WebComninfo system. Though, event dispatch capabilities may be désiatlsome point. So, in the
absence of generated events, the WebQatffo system does not implement reflection cue constructs from
the JavaBean system that are solely event system related.

17

2.3 UML Outline

An important caveat on disregarding events within the Imiation Framework concerns module events.
An extension of the current WebCom module configurationesystaises a use for module metadaad
consequently for modul&nfo objects. Modules are logically the source of interestingtesyy events and
moduleInfo objects are thus candidates for event dispatch documemtaiihin the Information Framework
structures. It should be noted that module event generatidrdispatch is handled within an entirely separate
design philosophy and so may be omitted from consideratighig point. There is, though, valid design
rationale for using the WebCom Information system to mamagdule event metadata.

In a further JavaBean analogy, the WebCom Information Fwaoriemight be used in conjunction with
BeanBox style containers. A BeanBox describes softwarepiwvides a visual environment in which to
manipulate JavaBeans. This visual Bean manipulation id irs€onjunction with object serialisation to
preconstruct and deploy arrangements of JavaBeans whidévagarticular software tasks. A similar sce-
nario exists within the context of WebCom entities and esakynoutlines a possible Condensed Graph IDE
implementatiorf. In this scenario, the enduser can create and mutate theatdtnts of node objects, set pa-
rameters, connect nodes, and perform other graph desigitiast Upon completion of graph arrangement,
the graph designer can serialised the designed graph tofi usgresentation. For instance, the designer
might generate a representation in the common XML based @wadl Graphs description format and de-
ploy this representation for execution or for further useother tools in the WebCom software suite.

2.3 UML Outline

With this motivation and general implementation sketch indnthis section will detail a draft Information
Framework UML specification. It is anticipated that this Gfieation will evolve to meet future criteria as
mentioned in the above section.

§19 Misleading Nominature. <A warning and lesson regarding the illchoskode Info terminology-
Before proceeding with a description of the software elemefithe framework, there is an issue of confusing
terminology to address. The early versions of this framé&weere developed with a static node operator
viewpoint. When the fluidity of operator port contents is iggah Condensed Graphs appear as a very node-
centric model. In reality, however, the key component ofsfistem is actually the operator. This is very
much the case in regards to documentation notations, amduigive when it is considered that the only
significantly varying elements of the model are the opegatbiode-centricity fails in any interpretation that
stresses the variable elements of the Condensed Graph.model

Unfortunately, the framework was initially developed ire tbontext of static operators, and so the node
object has undue priority in nominature over the operatf@aibThis is most apparent in the nawleInfo,
referring to a principal meta information class. In facistbbject really describes the metadata of the operator
on the operator port of the node in question. In the staticaipe case, this coincides with the node itself.
But although this works fine within the static operator céd@jls seriously in the dynamic operator case.

18

2.3 UML Outline

It has proven diicult to change this unfortunate terminology with the beraftiindsight. So, although
the existing terminology will be used herein, more apprajgrnominature will also be highlighted.

§20 Core Information Framework UML. <UML outline of the core classes in the Information Framework
The central spine of the Information Framework is Imefo, NodeInfo andCondensedGraphInfo inheri-
tance hierarchy, diagrammed in Figure 10. A top-down dp8oni of these classes is the most illuminating.

<<Abstract, |nmutabl e>>
Info
Base class of information objects.

+get Name(): String const
Visual name for the information object.

+get Description(): String const
Description of the information object.

+visit(inout visitor:infovisitor): void

Visit mechanism.

<<Abstract, |mmutabl e>>
Nodelnfo
Implementation contract for Node information objects.

+get NodeName() : String const
Alias for getClass().getString()

+get NumAr gument s(): i nt const

Number of operand ports for node.

+get ArgType(in i:int): String const

Type string of the i-th operand port.

+get ArgDescription(in i:int): String const
Description of the i-th operand port contents.

+get ArgStrictness(in izint): Strictness const
Strictness of the i-th operand port
+get NumQut put s(): int const

The number of operator outputs.
+get Qut put Type(in izint): String const
Type String for the i-th output

+get Qut put Description(in izint): String const
Description of the i-th operand output.
+get | mage(): | mage const

Optional associated Image object.

+visit(inout visitor:InfoVisitor): void

Implementation of superclass method.

<<Abstract, |mutable>>
CondensedGraphinfo
Implementation contract for Condensed Graph information objects.

+get G aphName(): String const
Visual name for the Condensed Graph object.
+get NodeNane(): String const

Phony implemenation marker for condensation.
+visit(inout visitor:infovisitor): void
Refinement of superclass method.

Figure 10: UML Diagram of Core Information Framework Classe

The Info class is the abstract base class of the structure, its pripoact as the hierarchy root and
to provide the basic common interface expected ofiaffo classes. Contentwise, it is a trivial data class
comprising two immutable metadata fields, namely a name ascrihtion of the object under consideration.
These fields are intended to contain display friendly cuesridusers, the name field being a short reference
tag for the entity, the description field a more elaboratdtifptype text.

19

2.3 UML Outline

At present, when endusers encounter graph elements in thentWebCom toolset, the tags used to
report contents and properties are not immediately heldfaé name and description fieldslinfo classes
can be used to provide more quickly recognisable cues. Athpthese entries are of use in error reporting,
this is not presumed to be the typical or only application.

The existence of a hierarchy base means functionality canla@ required of alinfo objects, not just
attributes. In particular, support for the Visitor pattésrmandated by theisit method. This is the hook
method for return dispatch in the Visitor pattern implenagioh and is described in more detail below.

There are only twanfo class extensions of importance. The firstisNhdeInfo class, used to describe
metadata particular for an inplace operator. Note @pairatorInfo would be more proper terminology
for this class. The second clasCisndensedGraphInfo, used to describe metadata regarding a Condensed
Graph object. Itis more accurate to say, however, thaftnfs is used to contain metadata for the condensed
operator that manages the condensation and evaporatioagsrof the actual graph. That it is a peer for
condensed operator metadata, clarifies most precisely wisya subclass of thodeInfo class which
models operator metaddta.

ConsideringiodeInfo in more detail first, it is an abstract, immutable and prifgatata oriented class,
similar to theInfo class in this regard. It is essentially not much more thanralbar of additional fields
augmenting th@nfo class together with a relabelling. The additional metad#ti#utes are:

e A node name, the internal name for the operator, defauldregdlassname string.

e A field containing the number of operands. This is both the Ibemof operand ports on a node con-
taining the operator and the arity of that operédtor.

¢ An indexed attribute of operand typing data. Each operamsdamaassociated type string describing
permitted datatypes. The interpretation of this strind kel discussed in the chapter on type checking.

e An indexed attribute of operand user friendly descriptions
e The number of operator outpéits

e An indexed attribute of output type strings, one per output.
e An indexed attribute of output descriptions.

¢ An optional graphical image for potential user visualisatiFor the Condensed Graph Infos this might
be an actual diagram of the expanded graph, for instancs.ig biank by default.

Finally, theCondensedGraphInfo, which really refers to condensed operators, is a smatéurexten-
sion of NodeInfo with the addition of an attribute string graph name field feeridly graph references. It
also includes some node name field masking.

BothNodeInfo andCondensedGraphInfo extend thevisit method to correctly dispatch callback.

20

2.3 UML Outline

§21 Example Info. <Basic application of the Info classes and a triviadeInfo example:

The use of Information Framework classes by third partyiappbns is intended to be by the implementation
of concreteInfo objects, describing operators and graphs. The main cumghémentations involve static
descriptions of operator data. An extremely typical sNoleInfo example is included in Appendix A.
The programing is simple, the only interesting portionsigehe string constants. If anything, this example
illustrates how these classes are trivially amenable toraatic generation schemes.

The included example is BodeInfo object for a basic addition operator. The attribute assigmm
are what distinguishes thisodeInfo from any other current example. The name assigned is “Auiditi
Node”, the node name isiébcom.nodes. core.AdditionNode”, the contents of the operand type strings,
both identical, are “ORjava.lang.Byte, java.lang.Short, java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double)”. The interpretation of these strings is covered in moreitle
later, but this example indicates the conjunction of thenfiitve numeric Java types. This particular operator
or static node has a single output, the result of the summafithe two input operands permitted.

Implementing thes&nfo interfaces need not involve static descriptions of opesaad graphs, however.
It is possible to produce implementations backed by noiesdata. For example, all available operators and
metadata items may be stored in a database and a concrétatiealof theNodeInfo interface programmed
to acquire data dynamically from this database on request.

§22 Visitor and Factory UML. <Description of Visitor and Factory patterns in the Inforritat Frameworks

The Visitor and Factory patterns in the Information Framewamplement the above described base data
classes from the perspectives of flexible application amdtraction respectively. Figure 11 illustrates the
UML outlines for the relevant classes.

<<Interface>>
InfoVisitor
Implementation contract for Info object visitors.

+vi si t CondensedGraphi nf o(i n gr aphi nf o: CondensedGr aphi nfo): voi d
CondensedGraphinfo callback

+vi si t Nodel nf o(nodei nf o: Nodel nfo): void

Nodelnfo callback

<<Fact ory>>

InfoFactory
+vi si t Oper andi nf o(in operandi nf o: Gper andi nfo): voi d

+get O aphi nfo(in_gr aph: G aph): G aphi nf o Operandinfo callback

Produce Info for input CondensedGraph A

+get Nodel nf o(in_node: Node): Nodel nfo

Produce Info for input Node

1
<<Adapt or >>
InfoVisitorAdaptor
Convenience adaptor class

+vi si t CondensedGr aphl nfo(i n graphi nf o: CondensedGr aphi nfo): voi d
Blank CondensedGraphinfo callback

+vi si t Nodel nf o(nodei nf o: Nodel nfo): void

Blank Nodelnfo callback

+vi si t Gperandi nfo(in oper andi nf o: Oper andi nf o) : voi d

Blank Operandinfo callback

Figure 11: UML Diagram of Visitor and Factory Informationdfnework Classes.

21

2.4 (Potential) WebCom Applications of the Information Framework

The Information Framework Visitor pattern support, via thechanism of double dispatch hooks, has
already been encountered. ThefoVisitor interface represents the other half of the dispatch pair and
forms the contract for visiting objects to implement in artteautomatically traverse the visit tree via builtin
mechanisms. So, an application programmer wishing to gsoge or multipldnfo items, may specialise
theInfoVisitor interface or its convenience adaptor subclass to the diesité, and then invoke tha sit
methods of thdnfo items to process, handing them the customikefbVisitor instance.

Centralising metadata processing code in a single visiémsgor in a tightly collaborating facet or Me-
diator, promotes good design in the applications that éixgics Visitor pattern. This can encourage sound
design in the internal WebCom programming base.

The next section includes example applications of the médion Framework. Of special note is the
documentation generation example, as it illustrates thermaal use of the Visitor pattern. The idea there is
to dump the available metadata in a typesettable form, verghrlike a dumb JavaDoc Doclet. The point of
interest is in the simple design of this application givea Yisitor support.

The Factory pattern is likewise elementary, but similadyuable. At present, there is a basic Factory
implementation in th&nfoFactory class to support flexible construction. This interface campilesented
with a Condensed Graph or node at runtime and will return &nwedtary Info object for that element.
The present version makes a best guess at metaattributent®noising some internal WebCom reflection
capabilities. It is of particular design value to preseninapder interface to these internal functions, as they
are currently too low level for easy third party application

In future, it may be useful to extend tlimfoFactory class to support both persistent metadata and
dynamically backed metadata. So, the results of each quauidvbe persistently stored and augmented with
other available information as it becomes available. Ong efactually implementing this scheme is to use
a database maintenance module, and have it listen for Wele®ents that may provide additional attribute
information. The discussion in the next chapter on evertesys will clarify how this might operate. Also,
informing methods can be provided for third parties to etlithe system about particulanfo objects if
this is convenient. And finally, this module can also inteéraith other information management modules
and exchange mutually interesting data.

2.4 (Potential) WebCom Applications of the Information Framework

The remainder of the chapter concerns some further mativédir the Information Framework, in the form
of potential and real applications thereof. DescribedWwedoe a number of applications that highlight the
flexible nature of the system. Despite its lightweight destge system plays a keystone role in higher level
WebCom plumbing software.

22

2.4 (Potential) WebCom Applications of the Information Framework

2.4.1 Documentation Provision

The first application involves the delivery of documentatides and cues to developers of Condensed Graph
programs. Although, the Information Framework by its veagutre can be exploited in many documentary
opportunities, the focus here will be on two particular amstes. Since the framework disseminates valuable
information, these two examples fall short of exhaustirgpbssibilities.

§23 IDE Runtime documentation provision. <Applications of the Framework within existing WebCom teols

The current WebCom software development suite of tools dred on the Condensed Graph IDE. This
tool facilities the production of diagrammatic and XML Camsed Graphs representations. It also forms
a testbed harness for the execution of these Condensed<zripke as an aside, that there are a range of
execution harnesses and the IDE forms just one option. Tie & an unified execution API is covered in
the Submission Framework application below.

Operationally, the IDE presents the user with a graph coatm canvas upon which nodes with static
operators may be arranged and interconnected by meansntépoianipulations. Available operatoode
elements are presented in a palette for drag and drop ssledthe IDE is an essential tool for experienced
graph developers, but is also a valuable means of introduoéw users to the graph paradigm which can
otherwise be diicult to grasp. Many beginner fiiculties are often resolved in the first IDE session.s are
often resolved in the first IDE session.

A deficiency in the IDE, and a current focus of development/éigtis a lack of relevant documentation
cues in the software. Rather than help manual support, thhel€@sed Graph development philosophy de-
pends on the provision of pertinent details on the constmgianel. Searching a help system is an awkward
solution and would impede graph design activity. The gragigher should be presented withistiently
detailed operator data immediately to hand, in order tdifaté design selections in constructing new graphs.

The Information Framework helps with thisfliculty in two ways. The provision of easily consulted
printed documentation is discussed presently, but firdimenprogram help cues are examined.

Essentially, the Information Framework can be used to pieegontent in a tooltip style approach within
the IDE software application. Potentially useful and alyeasedInfo objects may be cached in the IBE
and recalled to provide documentation details to designgesv Infos can be added to the cache as their
underlying peer entities are referenced in IDE graph canstns. This way, the IDE can present a book of
Info objects that is comprehensive in regard to the graph undetieation.

Exactly how these Info objects are used to prompt graph desigs a careful user interface problem.
This usability is critical but does not practicallyfect the mechanism of delivering documentation via the
Information Framework. Cues may be presented as autorhatiben, selectable, or otherwise.

The Information Framework is ideally suited to use as a dantation content system within the IDE.
In addition to Ul improvements, the adoption of the InforrmatFramework for content management also
has a the wider impact of expanding the body of availabléo classes. Mandating the documentation of

23

2.4 (Potential) WebCom Applications of the Information Framework

operators vidnfo objects prior to acceptance in the IDE would mean that intamtdio IDE documentation,
theseInfo objects would be available to other tools in the WebCom apfitin suite.

The documentation provided by the Info system consists artitan just description attribute fields. If
anything, experience has shown that the type string atégbeould possibly be the more valuable documen-
tation. Often an operator’s name igcient to describe its function, but will not provide enougformation
regarding operand types. The Information Framework pexid mechanism for the description of such
available documentation and also for the future additiohatlevant data attributes.

§24 Printed documentation generation. <An example exploitation of the Visitor pattesn.

Printed documentation notes on available operators seraaiaeful desk reference during the graph design-
ing process. Furthermore, the automatic generation of dachmentation from availabEnfo objects also
demonstrates the application of the Visitor pattern in tiferination Framework.

Name Addition Node
Node Name webcom.nodes.core.AdditionNode
Description Add the operands.

Num Operands 2
Num Outputs 1

Operand 0 A summand

Type OR(java.lang.Byte, java.lang.Short, java.lang.Integeva.lang.Long,
java.lang.Float, java.lang.Double)

Strictness STRICT

Operand 1 A summand

Type OR(java.lang.Byte, java.lang.Short, java.lang.Integeva.lang.Long,
java.lang.Float, java.lang.Double)

Strictness STRICT

Output 0 Result of Addition

Type OR(java.lang.Byte, java.lang.Short, java.lang.Integava.lang.Long,

java.lang.Float, java.lang.Double)

Figure 12: Addition Node Documentation

The basic operation of the documentation generator is toldebthe attribute entries of the available
operators. An example of produced results can be see ind-itur The generator is implemented as an
InfoVisitor extended to generate/AX listing of eachNodeInfo or CondensedGraphInfo it is applied
to. There is similarity between the documentation genenasiking over available Info objects and the
operation of a Java Doclet descending available Java paskiag source code. The production 6TEX
source is simply a typesetting convenience. The tool coasilyebe modified to also produce hypertext or an
XML formatted list of the Info documentation.

24

2.4 (Potential) WebCom Applications of the Information Framework

2.4.2 Type Checking

The original purpose of the Information Framework was tovigte data useful in the graph type checking
process. That is, provide data content to establish the athility of operators occupying nodes. Although
the particulars of this type checking will be outlined latitrey serve an illustration value in demonstrating
the Information Framework and as such, it is of use to trailt{fpe checking description here.

The type checking data is carried in the type string fieldéogfe Info andCondensedGraphInfo objects
and the compatibility of operators is determined by matghontputs to input type strings either before or
during a graph execution. The output type string of an opera¢eds to be contained within the input type
strings of the operators to which the initial operator re®ipropagated. Type strings contain a set based
notation for permitted type strings, so output types areainad within input types in set containment terms.

The process of type checking Condensed Graph DAGs invobmeg smount of processing and symbol
table type activity. The goal of the chapters leading up talldescription of the type checking system is
to outline software and design to facilitate the implemgaiaof type checking within a general WebCom
mechanism. In particular, the module and event API suppaesl to be described before the type checking
implementation harness can be properly considered.

There are two aspects to the type checking operation. It eamib statically during the endphase of
the design or it can run dynamically at runtime. Althoughe thtter approach involves a computational
overhead, it may be appropriate for looser typed graphs themdanteresting consideration of dynamic type
checking in Condensed Graphs is in the case of dynamic apsra&@pecifically, the generation of operators
via Condensed Graphs and their latter application withérgttaph that constructed them, rather than dynamic
operators as in the condensation and evapouration prdeissr way, the proposed system is designed to be
used either statically as a design aid or dynamical for fiéib

The more indepth examination of the type checking problepos&poned until Chapter 6.

2.4.3 Submission Framework

The final motivating example here is the WebCom Job Subnmdsiamework API. This API uniformises
programmatic WebCom task submission mechanisms and psessimgle API for WebCom invocations.

Presently, there are numerous methods for submitting vaovkebCom, including direct WebCom com-
mandline invocations, constructing WebCom instances frotinin Java, Web Services invocations, and via
the IDE interface. In particular, the Web Services and comtiae invocation methods have programmatic
Java counterparts. The current commandline tools simplgkim Java applications to perform the submis-
sions. These and future invocation schemes are handleafoniyf by the Submission Framework.

A uniform API approach to WebCom job submission allowaetent WebCom backend scenarios to be
varied independently of the invoking technology. This igpafticular value to application developers who
wish to use WebCom as an implementation technology. Thesslafeers can program job submissions to
this new API and leave the choice of actual backing setupeddtal site.

25

2.4 (Potential) WebCom Applications of the Information Framework

From this point of view, the Submission Framework suppdnts ise of WebCom from within other
applications. Specifically, these applications themseheed not necessarily be programmed as Condensed
Graphs. So, a traditional programmer might implement thporitg of an application in Java, for instance,
but leverage WebCom to handle portions of the program tigdtiyrsuited to Condensed Graph solution.

§25 J2ME Origins. <Submission Framework origins in WebCom mobile phone saftwa

The Submission Framework was developed as a result of denaaisthg from J2ME WebCom applications.
J2ME is the embedded systems Java edition supported on ewesttrmobile phones, handheld computers
and increasingly on other low end consumer electronics.

The J2ME WebCom application was designed to enable useubtoisjobs to an Internet connected We-
bCom server. These jobs would be submitted by mobile devines WAP or GPRS networks, to machines
which would perform the specified WebCom tasks and retumntset the original clients.

This connectivity makes possible a variety of novel WebCapliaations. For instance, a scientist might
preprogram Grid submissioA8so that she might run large computational trials remotelijaxdnsite. Simi-
larly, mobile inventory could be conducted by mobile degicennecting to a server database. Business tasks
could be scheduled and managed via WebCom, etc.

Faull] Faull]

Job Type Selact Maching

Mame: Factorial glire dor uc

Graph:

webcom demos factorial Factorial hittp: Mopc uce ie: BOS0MzvebcomMweb
com

WIS aluiuly 0

Argument 1
Type: Integer
Desc: Argument to factorial

Back Back

Figure 13: J2ME Application.

Figures 13 and 14 contain screenshots from the prototypd&e)2ibCom application. The left side of
Figure 13 illustrates a preprogrammed Factorial compariatisk. Users may either select preprogrammed
tasks or construct customised job specifications. The sglg of Figure 13 shows the machine selection
screen where users target operations to server machiness fday also augment this target machine list.

The left of Figure 14 shows execution parameters for a Fattask being entered. To submit a task,
users select a target machine and enter required paranast@esr the job specification description for the
desired task. This job is then submitted via, in this case A®\tbnnectiok! to the target machine. This
machine performs the required WebCom computation locaity r@turns result data to the original client.
The right of Figure 14 shows this information being displhye

26

2.4 (Potential) WebCom Applications of the Information Framework

Funl RBC = Funl)
Input Jobh Arguments View Result
Argument 1 ID: 4
|?1 Mame: Faclorial
Graph:
webcam demos factorial Factorial
Result: 5040
Back Sutbatnit Joks Back

Figure 14: J2ME Application Continued.

Being a simple prototype the initial J2ME application does address key security concerns. In par-
ticular, a security mechanism supported by a J2ME secwriikit'? on the client side and by a full secure
HTTP server architecture is essential. This security waigd need to respect the internal WebCom security
manager semantics. Some intermediate security measuwybsimilude restricting permitted machine to job
pairings on both ends of the transaction, and requiringigteuthentication by client machines.

The current application is limited to request type actiohsfuture, it is hoped that a fully connected
WebCom instance will be developed for the J2ME architecturhis would permit J2ME devices to be
leveraged into the networked WebCom topology. In particlldME devices could be scheduled specific
work that requires the attention of the device owner. Inwray, workflow and scheduling aspects of WebCom
can be exploited to benefit the device owner, rather thanpioéing the limited machine cycles available on
a J2ME device for group computation.

The Submission Framework arise from the need to descrikealtscriptions both in the J2ME client and
in the WebCom Java servlet on the server end. This WebContesean receive WebCom requests from
non-J2ME sources also, and might be used, for instance, ab &werface to Grid WebCom.

This servlet also raises the issue of uniformising prograticraccess to WebCom invocation methods.
Application programmers might benefit from a single WebCorocation API, and a variety of backend
WebCom invocation implementation schemes. So, for exanapfgogram that embeds a direct WebCom
instance could be easily configured to depend on a servle€dfelinstead, without recompilation.

§26 Framework Organisation. <Sketch UML for Submission Framework and outfine
The organisation of the Submission Framework inherits tiierination Framework classes, and adds sub-
mission software for complete job tasks. A basic submisgibrrepresentation is @ndensedGraphInfo
together with representations for graph operands and s@magement details.

Figure 15 depicts the representation for passing graptaopggob parameters. Here, thperandvalue
class maintains a string representation of the desirechopeand a mapping to tliperandInfo containing
the operand typing metadata. This class inherits fimfo and participates in the Visitor pattern. A more

27

2.4 (Potential) WebCom Applications of the Information Framework

<<Abstract >>
Info

<<Abstract, |mmutable>>

Operandinfo <<I mut abl e>>

Implementation contract for Operand information objects. OperandValue

- - Metadata for Operator parameter value.
- description: String
-type: String -type: String
-strictness: Strictness -val ue: String

<« Peer Mt adat
Operandi nfo(i n theDescr i ption String. in LheType: String, cr Thiadala Cper andVal ue(in theType: String, in theval ue: String)
in theStrictness: Strictness) Constructor
Constructor
. +get Type(): String const

+getName(): String const Type String for value contents

Phony implementation for superclass contract.
+get Val ue(): String const

+getDescription(in i:int): String const String representation of parameter value.

Description of the operand parameter

+get Type(): String const
Type String for value contents

+get Strictness(): Strictness const
Strictness of the operand port
+visit(inout visitor:infovisitor): void
Implementation of superclass method.

Figure 15: UML Diagram of Submission Info Classes.

correct model would manage the operand dateoimdensedGraphInfo using thes@perandInfo objects.
This would allow the coupling obperandValue objects to their peedperandInfos and to the containing
CondensedGraphInfo. This would represent a more accurate view of the softwdegioaships and tidy
some of the multiattributes of ti@ndensedGraphInfo class.

The role of OperandValue objects is to contain input graph operand values for the japly to be
executed. Figure 16 illustrates the remaining job manageoh@sses. Herdpb is the final element of the job
description triple, containing transmission and resultagje details. In particular, it stores the request time,
the result, and a universally unigidgob identifier, in additional to references to thendensedGraphInfo
and associatefperandValue objects.

The submission objects form a matching hierarchy for therstiér classes, in Figure fig:umlsubmitter
below. The parentobSubmission contains the job submission data elements, namely itsds®and a list
of interested objects. A submission igfdrent from a job in that job descriptions may be reused, pdetily
in the scenario where a job is submitted to multiple WebCorkéads which compete to turnaround the
result. For instance, the same job may be submitted to a WehlCom cluster and perhaps to a larger
national Grid for simultaneous execution. In this case,idea is to try for quick turnaround on the cheap
local cluster resource whilst the job is queueing on the mgpensive remote Grid.

The present framework includes two concrétbSubmission class implementations, each requiring
custom submission code. TheseBuagicWebComJobSubmission for local direct WebCom invocations, and
ServletWebComJobSubmission, containing a protocol serviet address field, for servieb@&m operation.
Both realisations have peers in the submitter hierarchygare 18.

Submission objects arrange the transmission of data toramivebCom backends, and so warrant asyn-
chronous thread implementation. These threads are mahggrdmitter elements, introduced presently.

28

2.4 (Potential) WebCom Applications of the Information Framework

Job
Data management for Job submissions.

-request Ti ne: Date
Job instance submission time.
-info: CondensedGraphl nfo

The CondensedGraph to execute.
-arguments: Oper andval ue[]
-result: String

-uid: LUD

Universal Unique ID.

+Job(i n theG aphl nf o: CondensedGr aphi nf o,
in theArgument s: Oper andVal ue[])
Constructor

+get Next U D(): WUID
Returns next UUID value.

+get Request Time(): Date const I < Manages subni ssion of

AN

<<Abstract >>
JobSubmission
Template class for Job submission varients.

-1ive: Bool ean
Liveness indicator.
-1isteners: Vector
Event listeners.

+set Request Ti me(in theTi me: Date): void
+get Name(): String const

Screen name of Job from Info.

+get GraphName(): String const

Graph name from Info.

+get NumAr gunent s(in i:int): int

Required number of operands.

+get Argunent (): Oper andVal ue const

Get i-th operand

+get ArgDescription(in i:int): String const
Get i-th operand description

+get U D(): UUID const

+set Resul t (in theResult:String): void
Set the result of this job. Internal use.

+get Resul t(): String const

+get Graphi nfo(): Condensed@ aphinfo const

<<Interface>>

Resultee

- +JobSubni ssi on(t heJob: Job)

Constructor

+run(): void

Job Submission loop.

+cancel JobSubni ssion(): voi d

Terminate submission.

+ki || Thread(): void

Kill submission thread.

+transmitJob(): String

Perform the job submission.

+i sLive(): bool ean const

+get Job(): Job const

+addLi stener (in |istener:JobSubmi ssionLi stener): void
Append a new listener.

+di spat chEvent (i nout event: JobSubni ssi onEvent): voi d
Send an event to listeners.

+r emoveLi st ener (i n | i stener: JobSubni ssi onLi stener): void

WebCom Interface for Result sinks.

+ ecei veResul t (in theResul t:Result): void

A

ServletWebComJobSubmission
Job submission for WebCom J2ME servlet.

BasicWebComJobSubmission
Job submission for direct WebCom.

+transmi tJob(): String

-target Machi ne: String
Protocol address of target servlet

+Ser vl et WebcomlobSubni ssi on(i nout theJob: Job,

Transmission implementation in theTar get Machi ne: String)
+recei veResul t (in theResul t:Result): void

WebCom Resultee Interface

Constructor

+transmitJob(): String

Figure 16: UML Diagram of Job Submission Classes.

The JobSubmission threads raise events at the start, completion and canoallatt submissions under
event model described by Figure 17. This is a traditionahesedel wherdobSubmission forms the event
source and implementations débSubmissionListener interface sink th&dobSubmissionEvent events.
Listener registration is done by thebSubmission class.

The main useful application of the event structure, othan thy third party code interested in job submis-
sion progression, is by the submitter classes shown in €ifj8r TheJobSubmitter class provides a hook
for third parties to invoke submissions and to process theli® obtained. Once #obSubmission object
has been acquired, it can be actively submitted viastiteni tJob method of the relevantobSubmitter
object. ThisJobSubmitter starts the job and provides callback adaptor hooks for trg, $inish and cancel
events. In this sensg@pbSubmitter is simply an adaptor for théobSubmissionListener interface, albeit
one with useful methods supporting third party participaiin the submission process.

BasicJobSubmitter is a trivial concretgobSubmi tter implementation. This class forwards basic text
representations of the submitted job, output and canzildetails, to thdobSubmitter’s Console object.

29

2.4 (Potential) WebCom Applications of the Information Framework

A\

1
1
<<Abstract >> <<Interface>>

JobSubmission I A listens to
Template class for Job submission varients.

JobSubmissionListener

+handl eJobSubni ssi onEvent (event : JobSubni ssi onEvent): voi d

n

JobSubmissionEvent

ener at es » r «servi ces
9 UBM SSI ON COVPLETE EVENT: int = 1 T

Enumerated Type Constant

+SUBM SSI ON_STARTED EVENT: int = 2
+SUBM SSI ON CANCELLED EVENT: int = 3
-type: int

State of job submission in event

-job: JobSubni ssi on
The Job this event occurs on

+JobSubmi ssi onEvent (i n theType:int,in theJob: JobSubni ssi on)
Constructor

+createStartedEvent (in theJob: JobSubni ssion): JobSubni ssi onEvent
Generate a start event

#cr eat eConpl et edEvent (i n_t heJob: JobSubni ssi on) : JobSubni ssi onEvent
Generate a completion event

+creat eCancel | edEvent (in theJob: JobSubni ssion) : JobSubni ssi onEvent
Generate a cancellation event

+i sJobSubni ssi onConpl et eEvent (): bool ean const
+i sJobSubni ssi onStartEvent (): bool ean const

+i sJobSubni ssi onCancel Event (): bool ean const
+get Job(): JobSubni ssi on const

Figure 17: UML Diagram of Job Submission Events Model.

A trivial commandline job submission tool would simply théamp the contents of thidnsole.

It helps to reconsider at this point, how a WebCom backenchtriig added to an existing applica-
tion. Suppose an application designer has isolated progtaments which have an elegant graph repre-
sentation. The designer constructs suitable graphs amadug® job specifications for them in the form of
CondensedGraphInfo objects. Thereafter, 2obSubmission object is created by constructing the required
Job object and coupling théondensedGraphInfo object to the instance operands. The designer finally
selects the means of execution by instantiatidglaSubmission. In practice, the selection of concrete im-
plementation is done with a factory class, leaving the desig application WebCom backend independent.

For the designer’s purpose, it may be necessary to impleamrdtoniobSubmi t ter to format the result
strings into exactly the desired form for reimportatioroitite original application. To invoke WebCom the
designer simply constructs the desired instanc@abfSubmitter and uses this to fire the execution of a
concreteJobSubmission via the particular means described therein. This will cahsalesired graph to be
executed and the designer can recover the results from shensdobSubmitter extension.

§27 LaunchGUI. <Graphical tool for the submission of Condensed Graphs

LaunchGUI is a graphical application for the selection anldnsission of Condensed Graphs to WebCom
backends, implemented with the approached outlined justeablt applies the Submission Framework as
proposed and provides basic reporting to populate theajiggla graphical console.

30

2.4 (Potential) WebCom Applications of the Information Framework

servi ces > < gener at es
JobSubmissionEvent

<<Interface>> <<Abstract >>

JobSubmissionListener Listens tok JobSubmission

“+hand| eJobSubmi ssi onEvent (event : JobSubmi ssi onEvent): voi d Template class for Job submission varients.

A

<<Abstract >>
JobSubmitter
Job Submission Manager

-pendi ngJobs: sets
Unreturned submissions. javax.swing.text.DefaultStyledDocument
-results: Set

Competed jobs.

+get Consol e(): Consol e const
+set Consol e(t heConsol e: Consol e): voi d
+j obStart ed(t heJob: JobSubni ssi on) : voi d
Abstract interface method.

+j obCancel | ed(t heJob: JobSubni ssion): voi d Console

+ obConpl et ed(t heJob: JobSubni ssi on): voi d

+handl eJobSubni ssi onEvent (event : JobSubni ssi onEvent): voi d GUI Result Data Display
Handle job events. +append(str: String): bool ean
Append display text

+subni t Job(t heJob: JobSubni ssi on): voi d
Submit indicated job for execution.

+cl ear Pendi ngJobs(): voi d

Disregard current jobs.

+get Pendi ngJobs(): JobSubni ssion[] const
+clearResul ts(): void

Drop current results

+get Resul ts(): JobSubni ssion[] const BasicJobSubmitter
Return current results Standard Console Based Job Manager
[r +Basi cJobSubni tter (in theConsol e: Consol e): voi d
Constructor
+j obSt art ed(t heJob: JobSubni ssi on): voi d

Concrete Implementation
+j obCancel | ed(t heJob: JobSubni ssi on): voi d
Concrete Implementation

+ obConpl et ed(t heJob: JobSubni ssi on): voi d
Concrete Implementation

Figure 18: UML Diagram of Job Submitter.

The LaunchGUI tool provides convenient graphical WebCovnéation and is particularly suited to new
WebCom users. Jar libraries may be loaded and unloaded tordgally change the available task descrip-
tions and backing classes. Once desired libraries aredo#uz user are shown the display in Figure 19. The
top half of the window diagrams the available task desaisj automatically extracted from the available
libraries by identifying and instantiatinondensedGraphInfo classes. The bottom half of the window
displays the information provided in the selectethdensedGraphInfo. In this case, th€actorial con-
densed graph object is selected and relevant details alayksl from theFactorialGraphInfo class.

Once a desired job description is selected, the user mayedihe submission process by pressing the
“Set Arguments and Execute” button. Doing so presents s$@ai in Figure 20. Here, required operands can
be configured. The displayed descriptions and typing datealten from the relevadbndensedGraphInfo.

The user may customise the operands by modifying the “Vdiigdds. When the user has finished setting
parameters, the actual task submission may be accesséxViaxecute” tab.

Selecting the “Execute” tab yields the view in Figure 21 whavailable submission procedures may
be selected via the “Submission Type” widget. Like job dgdimms, these submission methods are also
automatically read from the available libraries by ideyitify concrete instances dbbSubmitter.

Upon submission method selection, a configuration panédjgal/ed in the available space. In Figure 21,

31

2.4 (Potential) WebCom Applications of the Information Framework

I webCom GUI
File Edit Help

G Libraries | ©G Browser | A quments | Frecte |
Condenssd Graph Erowser

=] Condensed Graphs
(=] webcom
] cgengine
] demos
I Fact
e
) powersaftwo
) simplegraph
) nodes

Expand All Colapse Al

Mame:

| Factorial

Condensed Graph

| webcom,demas. Factorial Factorial

Arguments

Ivoe Descriot|
1 javalang Integer

on
Argumenk to Factorlal

Set Argumentts and Execute

Figure 19: LaunchGUCondensedGraphInfo Selection.

Fle Edt Help

G Libraries | CG Browser | Arguments | Executs
Select Arguments

Hame

| Factorial

Condensed Graph

| webcom. demos. Factorial Factorial

Arquments

Description | Argument ko Factorial

Type ‘

Value

|
ki

Remove Argument

Add Argument:

save Graphinfo

Figure 20: LaunchGUI Operand Configuration.

32

2.4 (Potential) WebCom Applications of the Information Framework

N webCom GUI CEEX

File Edt Help

CG Libraries | CG Browser | Arquments | Exerute

Exerute Condensad Graph

Submission Type

webcom, jobsubmission, submitters, ServietwebcomlobSubmitterPanel ~

Submission Parameters

Submit job to @ WebCom serviet,
Target Machine

| http:/fagador, ucc ie: 8080/ webcom/webcom

Console

Starting New Job

Job: Factorial
Runring
Graph: webcom. demos Factorial Factoriel
Tirne: Mon Aug 08 06:02:59 BST 2005
UID: -18519F6c: 10534784829 7Ffc
Arqument 0
Arqurnent £o Factorial
Type: java.lang. Integer
Value: 7

Figure 21: LaunchGUI Submission Dialogue.

a servlet submission is selected and the user is being gukenighe servlet protocol address. When the
submission process has been configured, the user may peahfersabmission by selecting “Submit.”.

Upon submission, the requestg@dbSubmitter is constructed and the associated configuration panel
displayed. ThelobSubmitter knows which version ofiobSubmission is required, meaning that concrete
JobSubmission versions can be constructed blind to the LaunchGUI tool bypllnggablelobSubmitter.
With the JobSubmitter andJobSubmission in place, there is remaining work. The submitter is informed
of the correcConsole, namely the text box at the bottom of Figure 21, and then iadokn the case of the
LaunchGUI there is nothing further to do and the output wilbear in theConsole text box display. More
sophisticated applications might augment@oasole or JobSubmitter to recover specific result data.

Aside from illustrating the user application of the Subrities=ramework, this tool has a role in the We-
bCom application suite as the present WebCom tools lacleadly graphical tool solely for the submission
of WebCom tasks. Previously, either a commandline tool veaslwr the task was first loaded into the IDE
application. The former is not suitable for new or nontechhusers, and the latter is too detailed for simple
WebCom trials. In any case, the IDE is part of the softwaresiigment kit that is not required in a runtime
environment. The LaunchGUI tool is more thartfstient for enduser invocations.

The LaunchGUI and IDE may be combine in future to uniformigbrsission mechanisms. While the
IDE does include a separate task invoker, this employs eeltie Submission nor Information Frameworks.

Also, the LaunchGUI tool may be written in the notation of tfledule API, that will be discussed in
Chapter 4, and incorporated into the system tray toolsetritesl there. This is an always on version of

33

Chapter Notes

WebCom with potential to be leveraged as a system level i, and is the focus of more in-depth dis-
cussion later. The tray tool makes WebCom available to glliegtions and would be nicely complemented
by a LaunchGUI feature. Such an addon is easily implementtdtihe Module API.

But before considering the Module API, it is first necessargtamine the aspect based eventing system
that has been added to WebCom. This is the topic of the nepteha

Chapter Notes

IMetadata schema mutation requires some way of informing clieftise current schema. This support is not required for type
checking and is perhaps not required for the vast majoritythdroapplications also. As such, the implementation of megasigiema
mutation is a low priority item. In terms of module data schemadteare are some concerns, relating to informing clients of module
functionality, that are considered briefly in the chaptenwdules and form some overlap with metadata schemata mutation.

2And likely containing certain passive data items neitheunegl nor desired in the metadata schema.

3This WebCom module configuration and other module orienteeldpments will be considered in a later chapter. But brieffig, t
new module configuration supports the automatic loading ofl tharty modules and is intended to provide opportunitiesxiodule
writers to advertise functionality. Both these design gdenefit from the use of metadata.

4Note that a Condensed Graph IDE is already in use, followidigfarent design. Nevertheless, a BeanBox approach to grajgndes
might be of benefit, either in future versions of the existiBg Itool, or in a separate lightweight graph designer.

5This is not to say that nodes are not the fundamental strurtihe Condensed Graph model. They are, but they are not tantra
the operational implementation to the same degree as they tre $pecification. From the enduser view, it is operatorsateacentral.

5The alternative view would be to say that Condensed Graghmatances of Nodes. This is true but doesn’t help explaip tivé
metadata requirements of a Condensed Graph are similar todhaseoperator.

"This is a small but precise distinction. The number of operatspn a node will change if afiiérent operator is placed on the
operator port. The number of node operands can change dyrgrhicanatch the graph construction. Operator arities aredfixe

8presently, this must be one as multiple output operators areune@ntly permitted.

9The actual management Bfifo objects is ideally suited to a module formalisation as notetieea

10The WebCom technology supports integration with Grid corimgyit

11Any network connection technology could be used for thisnemtion, e.g., WAP, GPRS, Bluetooth, WiFi, etc.
125ch as that provided by the Bouncy Castle project.

13vjia the UUID Internet specification.

34

Aspects and the Event API

major development in the WebCom design over the course sffiksertation has been the adop-
tion of Aspect Oriented Programming (AOP). Whilst WebCom aém predominantly OO in na-
ture, significant elements of AOP design have been intratdiiespecially in the guise of the Event
API. The direction of this chapter is to explain aspects ahdtvaspect design brings to WebCom.
Particular €ort is spent on the Event API, as this provides a great exaofpteorporating the benefits
of aspects whilst retaining an illusion of OO implementatid/loreover, the Event API is a cornerstone of
the revised module structure and a key component in the mgaiéation of type checking support.

3.1 Introduction to Aspects

Aspect oriented programming is a paradigm which has regeaetjuired much publicity. Although, aspects
have emerged as a recent phenomenon, they have roots inXa@dex PARC research projects. With the
development of better support tools for AOP, and with moie more developers being introduced to aspect
techniques, it is only a matter of time before aspects wikéen in most OO projects.

§28 Aspects and Object Oriented Design. <A comparison and consideration of aspects and OO desigonsiphies
Aspect oriented programming does not seek to replace OCaroging. In fact, aspects complement OO
design, just as OO design complements imperative programmmhAspects address afiitult OO design

35

3.1 Introduction to Aspects

problem and implement a pattern to limit the undesirablesegnences of this problem. Whatffdrentiates
OO programming from imperative programming is design @ufthy more than any actual implementation
programming language. This holds true for aspect orientegrpmming also. Although aspect design occurs
intrinsically coupled with OO design, it requires a radichinge in view.

OO design is not limited to imperative base languages and @@iples can be applied in a range of
different settings, logic programming, functional progranmgniaetc. And although this argument may be
made of AOP also, it is somewhat true that aspect orientagmlescounterproductive outside of imperative
and OO contexts. The problem with using aspects within datile programming is that, in some senses,
aspects are a disguised goto statement. Aspects do provialeldy to abuse program control flow and, as
such, are at odds with a declarative approach. Howeverctspwolve a highly structured approach and so
can be forgiven most of the goto statement comparison. th,taspects are really less questionable than OO
stables like exception handling support.

Aspects provide the facility to augment existing programgréode at particular definable points. Devel-
opers can use this to indicate generic code to perform atieatdmce of a particular circumstance within
a program, and the mechanism whereby this is achieved isrtgke snain advance provided by AOP. With
disciplined programming and a framework for generatingiesjean AOP style of programming could be im-
plemented without the use of aspect constructs. By impléimgthis “little eventing policy” pattern, aspects
contribute enormously to the successful negotiation odsratting concerns in program design.

The aspect approach is a valuable development in OO desigact, AOP and OOP are very critically
interdependent. OOP depends on aspects to solvéfieuttirecurring design problem, whereas aspects
depend on OOP for their proper context.

§29 Aspects within WebCom. <The adoption of AOP possibilities within the WebCom softveaiite>

Support for the AOP paradigm has been introduced to the Web&ldte as part of this dissertation. In-
troduced AOP even makes possible an event based progranmeitigpdology within WebCom. Later, it
will be seen that logic programming methodologies are alsdlable, though not AOP dependent. These
programming techniques are transparent to developers whotcexplicitly wish to apply them.

The introduction of aspects to WebCom was done using the cd$ystem, a Java AOP implementa-
tion. AspectJ adds additional notation to the Java spetiditand compiles aspect source code into binary
compatible Java bytecodeThe AspectJ compiler also compiles Java code that does plaieaspects, so a
change of compiler is the only change that developers ignafaspects notice. In the context of automated
WebCom builds, this change isflicult to spot. This just illustrates how easy it is to adopteassupport
within an existing project, and how this adoption can be dsitkout any consequences in the existing code.

Aspect documentation herein will be presented with Aspeotadtion and terminology. The basic con-
cepts are common to AOP implementations, and casting théxapectJ terms should not causéidulty.

It is important to point at the results of changing to the Agpeompiler. Essentially, without noticeable
cost, the WebCom system can provide the Event API abstradéscribed below. This is a mechanism for

36

3.1 Introduction to Aspects

providing core WebCom event data without requiring modifaato these internals. The Event API also
provides a model for implementing event systems within tle@bm core or in module development.

The basic facility to program using aspects in the WebCore $a1also important. The possibility to apply
aspect design solutions within WebCom tools is a valualdle.aiVith careful application during refactoring
and extension, AOP provides an opportunity to further tity/\WebCom design.

3.1.1 Crosscutting Concerns

In short, aspects handle crosscutting concerns, providifigmalism, namely that of the aspect, in which
crosscutting concepts may be modularised and reused. Trbduetion of this aspect device promotes good
design in addressing crosscutting concerns, but can alaséx as anféective program implementation
device. Most importantly, aspects introduce additional @ign possibilities and augment basic OO in a
manner akin to that of patterns. Aspects may be consideredvasy important pattern, but ignoring the
software developed around aspects and describing AOP agpfitieation of a single pattern is inaccurate.

The problem AOP addresses is crosscutting concerns, elewiesam OO design which are scattered over
a number of design units. A crosscutting concern is a dedigment that fects or is implemented by a
number of classes. From a design perspective, this is higidgsirable in that it promotes high coupling and
low reusability. Well designed OO applications try to mimsesuch coupling.

Crosscutting is a very serious problem and inhibits relisabspirations of OO design more than perhaps
any other design problem. Often, the particular crosswyiroblem is inherently multiclass and does not
present a noncrosscutting implementation. Such unavigidabsscutting is diicult to implement, requiring
consistent ad hoc programming in a range dfedent classes. Moreover, the implementation of schemes
to manage crosscutting tend to be oneshot, if even attem@easscutting is often just tolerated. But in
either case, the reusability of thé&fected components is torpedoed. Worst still, crosscuttomgerns are
encountered time and again by OO designers, and occupygispionate amounts of programminfiaat.

Some motivating examples may help clarify this discussiod, ainfortunately, there are more than
enough classic crosscutting examples to choose from. Btarine, consider the problem of adding secu-
rity checks to an existing systemCredentials need to be verified at points where elevatedqmes are
required. However, these points are often scattered thiaughe software implementation, since it is im-
probable that privilege elevation points might have beetreéised during the original implementation. And
even if such foresight was employed, it is unlikely that all/ilege elevation points were successfully and
consistently captured. Essentially, the adoption of arégcmechanism using traditional design would re-
quire a demanding refactoringfert touching on all elementdfacted in the security crosscutting concern.
Such time intensive reimplementation is a defining crossgutoncern characteristic.

Highlighting the crosscutting problem is notfBaient, AOP must also provide arffective solution.
This solution is to aggregate definitions of the points wieeosscutting intersect base code, and to provide
programming code, or advice, to be performed at these pdihis aggregation is the aspect element.

37

3.1 Introduction to Aspects

In the case of the security crosscutting concern, AOP pesvaddesign solution by allowing all the priv-
ilege elevation points to be conveniently referenced withsecurity aspect. Each time a privilege elevation
points is encountered, the aspect system provides an opjitgrtor the security aspect to execute some code.
In this case, code to verify the user is authorised to elguatdege.

This is a solution because it centralises the authorisatale, dislocating it from the privilege elevation
points in the code base. Introducing this code at everylpgei elevation point is programmer intensive,
whereas isolating the points and describing the authaisaheck once is far more productive. Furthermore,
the original code containing the privilege elevation psiistignorant of the security aspect and thus freed of
the crosscutting concern problem as manifested in the isgcequirement. The original code may be reused
with or without reference to security, which if required damreapplied via the aspect.

Security is not the only domain that lends itself to good aspgpression. Other recognised application
areas for AOP include caching, logging, profiling, and deing. A caching design is described below.

AOP facilitates the avoidance of crosscutting by moduéatidesign which would otherwise pollute the
overall OO design. In this way, AOP improves reusabilityilggyrise to better OO design. But AOP is not
effective in solving the crosscutting problem entirely. A Idtabosscutting concerns present easy aspect
solutions, but this is not the case for all such concerns.eSmay require convoluted and counterproductive
AOP solutions. In a sense, it is a question of design appicafOP dfers a design tool,fEective in a large
number of cases and consequently it is certainly valuahlé ABP is not a magic bullet for OO design.

There are other disadvantages in the application of AOPemiacand methodologies. One of which,
is a reluctance on the part of developers to adopt the newddmfly. This problem is faced by any new
paradigm and is only overcome with time and good developrtamis. This mirrors the transition from
imperative programming practices to OO practices, althahg change is not so revolutionary in the case
of AOP. Much of the problem stems from lack of experience W@P, which manifests itself in sometimes
poor initial AOP design €orts. This is a discouragement for developers new to aspects

Perhaps the biggest problem with AOP is the nonlinearityspkat programs and the consequent debug-
ging difficulties. This is a serious problem and the subject of muckldpment activity. The emergence of
mature visualisation tools for AOP is anticipated to help\ate this problem. However, in the meantime,
the initial obstacles in pursuing AOP are sometiméBalilt to overcome.

3.1.2 Join points, Pointcuts and Advice

Describing the applications and mechanisms of AOP withif@é&m will require some technical discussion
of the aspect model presented in AspectJ. The detail odtiimthis section will be used to present two classic
aspect application implementations before moving on teictan specific WebCom aspect usage. These two
case studies present aspect software elements that headyabreen trialled in the WebCom system.

The first piece of aspect jargon here is “join point”. A joinitas an identifiable point in a control flow
execution, such as a method call, assignment, condititetaieent, for-loop initialisation, thrown exception,

38

3.1 Introduction to Aspects

or so forth. Perhaps the best characterisation of an AORm®yate the join points permitted, describing how
the system traddfs detailed join point reference against the encourageniefiicient, practical design.

AspectJ supports join points for method(or constructarpaation and executiohjnstance variable ac-
cess and mutation, exception catch blocks, together witlows class and object initialisation points that
are of lesser interest here. It helps to think of AspectJidiog join point granularity at about the level of
method access. That is, submethod level detailfiscdit or impossible to capture in AspectJ, and counter-
productive to attempt. Instance variable access and rontate an exception to this view, but such operations
deserved dedicated methods anyway. The other discreghatgf exception catch blocks, is an application
of sufficiently utility to warrant relaxing the method level view.

A pointcut is a set of join points. AOP systems typically poe/programmers with wildcards, predicates
and other means by which to flexibly select sets of join pdimferm pointcuts. AOP depends on convenient
aggregation of join points into pointcuts, specifying ofledo execute when control occupies these pointcuts.

AspectJ provides a range of support for pointcut speciticatincluding the specification of join point
elements in Java dotted notation with unrestricted, lestigibclass and interface wildcards. AspectJ allows
Boolean operators to be used on pointcuts to conjoin, disfmi negate sets of join points. Join points may
be referenced by sort, e.g., instance variable access atatiom) method and constructor invocation and
execution, and the various initialisation sorts. Poirgatdn restrict join points based on method arguments
or target objects, based on position in a call tree or on stiotelass scopes, or based on user defined Boolean
criteria referencing any available Java methods or va&bl

Precision in pointcut specification is the black art of AQRslessential to describe pointcuts with suf-
ficient detail to discriminate the join points of interesgtyobustness is equally desirable and extremely
detailed pointcuts risk being made redundant on small bede changes. For instance, a pointcut explicitly
referring to a specific class method may fail if that methogr@moted into a superclass.

Advice is the term used for code executed at pointcuts. ddati advice is associated with a given
pointcut, and is executed based on the nature of this aseoci@henever the conditions of the pointcut are
satisfied. Advice can be arranged at pointcuts in a numbergéwit may be executed before the pointcut
is realised, after it is finished, or if it finishes with a padiar result or error. Advice can also be specified
around a pointcut, including code to execute before and thféepointcut. Advice may even refuse a pointcut
execution, provided that any necessary return types apgesupnted.

Additionally, advice may be used to inject new class andamst members into an object, so an object’s
interface can change dynamically to fit circumstances duaimexecution. For instance, if a certain pointcut
demands a particular interface from an object of interést,advice may augment that object with such an
interface implementation if one is not already possessethi$ sense, advice can “decorate” existing code
and permits a sneaky, encapsulation violating implemiemtatf the Decorator pattern itself.

Note that pointcuts and their constituent join points agedhly place where advice can be used to insert
or modify behaviour. This explains why the exposed poirgalétermine the character of an AOP system.

39

3.1 Introduction to Aspects

Provision of advice at unsupported join points require atgusupported join points to coincide with the
desired join point, and is deeply counterproductive.

An advice-pointcut pairing will typically address a sindgeet of a wider problem. Groupings of advice
and pointcuts forming a cohesive construct may be combinethiaspect. So, for instance, in the earlier
security application example, the pointcut specifyingipgge elevation points and the authorisation advice
code may be grouped into a security aspect.

Aspects look very much like classes within AspectJ, butelae some aspect specific constructs, like
advice and pointcuts, which are not available in regulaa Jd&sses. Otherwise, classes and aspects share
many elements. Aspects may include variables and methotisjistance and statfcLike classes, aspects
may form part of polymorphic and dynamically bound hiergesh where both the abstract and extends
keyword behave much as they do for classes. Aspects mayrimepleinterfaces and stand in for these
interfaces type. And finally, for now, aspects may also béetkis the manner of inner classes and interfaces.

The runtime operation of AspectJ is best explained by censid how control flow operates in the
neighbourhood of an active pointcut. Assume that contréh@region preceding a pointcut, is as it would
in the nonaspect scenario. The type of the pointcut advitermiénes how it is triggered. So, for instance,
before advice is triggered immediately before the pointcut exeauytas isaround advice, whereasfter
advice is triggered immediately after the pointcut exemrutin the case of where multiple applicable advices
are possible, the AspectJ runtime determines precededcapgties the alternatives in order.

On encountering a pointcut trigger, metaobjects are pegpiar provide the advice with access to infor-
mation regarding the trigger join point, such as its locaiio the control flow, its application target and so
forth. The control flow is passed with this metadata to thevaht advice. Once the advice has concluded,
control is returned to just after the trigger join point. Arception applies in the case of around advice, where
control is returned just after the original method callgiaedless of whether the advice invoked the method.

Before considering a pair of examples, it may help to reerarhiow aspects help solve the crosscutting
dilemma. The isolation of points where crosscutting conséntersect the base implementation is done by
the use of carefully formulated pointcuts. The behaviouthef crosscutting concern at these intersection
points is then managed by the use of advice, although thession of crosscutting behaviours may also be
implemented by augmenting object interfaces and othentguks. The crosscutting concern is managed by
aggregation into aspects, promoting the modularity andaeility of the concern.

3.1.3 Example Aspects

§30 Caching. <Presentation of a simple but extremefjeetive aspect to transparently cache.

Caching is an example of a crosscutting problem introdueirfggh amount of localised class pollution.
Caching results of class or instance operations is typigalplemented locally via the storage of precompu-
tations or previous results. Furthermore, all methods yeciody cachable results, need to be augmented with
code to service the implemented caching arrangement. Tiiisgement need not be uniform andelient
classes may implement local caching iftelient ways. Whilst this may be desirable for domain specific

40

3.1 Introduction to Aspects

reasons, it is nevertheless scattered code dhdudt to maintain and a developer must completely appreciate
the particular caching requirements of a class before ngadtimnges or updates.

Such localised caching implementation isfidult to centralise without coupling classes participating
in caching with a dedicated caching class. This couplingtdirdlass reuse in that classes must bring this
dedicated caching support with them. But there are soursbnsato centralise caching, this being the only
way to implement consistent cache poli€iesbust to changes in backing storage.

Taken over an entire application, the caching concern hamgimg local €ects. Every class requiring
caching functionality is polluted with fields and code splgérving the caching objective and not that of the
underlying class. In this way, class cohesion is damagedgiusider an implementation which requires only
optional caching. Implementing separate cacheless dassie hierarchy is undesirable since it introduces
update dependencies. On the other hand, it creates offieulties to allow cache equipped classes to disable
caching. Aside from adding more incohesive code to an ayrgatluted class, there is little point having
caching code and structures if they may never be used..

Fortunately, aspects can help and indeed caching is a cteanpe of the benefits which aspects can
introduce to a system design. It provides a viable alteradt the above problematic designs, solving the
caching implementation fliculties. The use of aspects in caching is both straightfaivead extremely
effective. Caching, together with logging, is one of the kii@plications for aspects.

The caching aspect implementation involves centralidiegciching backing datastructures in an aspect,
and updating these structures blind to the classes on whéctetching is applied. Each method that is cached
or precomputed is captured by a pointcut in the caching asgéds pointcut is then advised as to how to
implement caching for that method. The caching aspect tbasists of pointcuts for all the methods to be
cached, the relevant advice, and the backing datastrgcture

Say, for instance, that an application wishes to implemaahing, or precomputation tables, for various
often used trigonometric functions. Suppose further theaicheless version of the application has already
been implemented that employs the library trigonometnicfions from the Java API. With aspects, it is not
even necessary to change the references to the libraryidoadh the base application. Instead, a caching
aspect is written that advices the operation of these liftarctions to serve the caching goal.

Take the case of the sine function, the other functions be®afed similarly. The caching structures
for the sine results are implemented within the cache aspedt in a lookup table, a hashtable of previous
computations or whatever. The cache aspect will also aoatgbintcut capturing the join point representing
invocations of the sine function in the Java Math librariBlsis pointcut is given around advice, meaning that
it can mask the actual library sine invocation by providiitgmative results. The actual advice first considers
the sine function parameter, available in the reflectiveacdtatia passed to the advice. If the parameter can be
served from the cache data, i.e., is present in the lookup tatprior computations table, then this answer
may be provided directly to the caller without requiring amdcation of the Java library method. On the
other hand, if a result is not available in the cache, thatipmethod can be invoked and the result appended
to the caching aspect data store before being returned tmatlee.

41

3.1 Introduction to Aspects

The use of trigonometric examples is somewhat trivial i tha Java library implementations are already
efficient and caching aspect overhead would be prohibitives Phrticular domain is used for illustration
only. The aspect application pattern remains the same evendre complicated and intensive operations.

This proposed cache aspect solves the design problemslekesearlier. In particular, it deals with the
scattered caching code. All caching code is containedttiiredthin the caching aspect, and base objects are
ignorant of whether received results are served from catthetsres or from direct method invocations.

Excising caching code from the base objects removes allrgaiduced coupling and code pollution, in-
creasing cohesiveness. Centralising the caching codersaas that implementations and policies may vary
independently of the base classes without requiring systeéenrefactoring &orts. Note that implementing
different caching policies for fierent elements is possible, since methods may be categjartsepointcuts
based on the caching policy to apply and this policy may bdempnted in custom pointcut advice.

Also note that optional caching is easily managed withinabpect approach. Globally, caching may
be disabled by either using a Boolean flag in the cache aspesitnply not loading the aspect. This latter
solution involves absolutely no overhead whatsoever, stilile former introduces some unnecessary stack
frames and operations. However, the former approach camfbeed to dfer caching on a optional per
method, or pointcut, basis. In this case, whatever overtsiadurred would have been incurred by optional
caching support in a nonaspect based implementation ofraenyway. Only in this case, the code would
also have been scattered. With an aspect based implenoenthié advantages of a separate hierarchy style
design for optional caching are leveraged without any ofeociated update maintenance problems.

Caching remains one of the most convincing aspect desidresiriplementation is successful in solving
many of the problems that blight traditional OO caching gesiNotice the manner in which the developer
is freed from considering the crosscutting concern in eetags of the application, and can focus on imple-
menting the base class moduldfdiult crosscutting dilemmas. Only once dfi@ent and well designed base
application is implemented, need the developer begin tof@n crosscutting concerns.

The ability to concentrate on a proper implementation, emlater layer the many crosscutting concerns
on top of this, is the goal and promise of AOP. The need to nogsrutting concerns with base implementa-
tion is a deficiency in the OO design process.

§31 Logging. <Logging aspect design and use
Logging and tracing support is the second example aspetitafipn, and bears some initial similarity to
caching. Many crosscutting concerns are similaffge&ively tackled with this basic aspect pattern.

The logging aspect tackles the crosscutting concern oftiggamccurrences of particular conditions and
software events. At such an interesting event, the loggépget is to augment a log file, or console output,
with a brief text message describing the condition. Theilog@spect design is to log in the manner of the
Log4J package, without requiring the scattering of loggiatls throughout the logged application.

Preventing scattering yields the same benefits as in theof@sehing. But a particular issue to logging
is internationalisation. By centralising logging opeoat and associated messages, internationalisation and

42

3.1 Introduction to Aspects

translation is simplified. This is not an alternative to gettor other well-designed internationalisation tools,
but serves to motivate a potential benefit in smaller apfidina.

Although logging may be implemented using existing arahitees and tools, there are distinct advantages
in using aspects. Apart from minimising log call scatteritiggre is also the reduction of string construction
operations associated with logging calls. Typically, adaji made from within an application might involve
string concatenation to form the display message. Thisatenation can be a serious overhead when done at
the point of the logging call, especially if logging may bsabled in the application. For although disabled,
an application may still be stuck with the unnecessary gttoncatenations. Using aspects can avoid this.

A logging aspect, firstly, possesses a backing log mecharggher handcrafted or leveraged from an
existing logging framework. In addition, the aspect canntan the list of log messages, by the use of an
external system like gettext, by listing the messagescsiitj or by other means.

To implement logging calls without polluting the class stng the log event, a pointcut is designed to
capture the desired event. This event may be a method inwocatfield access, or usefully, any Boolean-
testable Java occurrence. So, timing and condition evemsraling on scattered state can be easily checked
also. On tripping a specific pointcut, advice sends the aglemnessage to the logging backend.

Log message scattering is significantly reduced in thisreeh@nd string concatenation penalties may be
avoided when logging is disabled. If string concatenatimesdone within the aspect advice, and if logging
is disable by not loading the logging aspect, then the stromgatenations are bypassed.

Before leaving the issue of aspect logging, it should alspdied that logging is just one of many useful
aspect applications in debugging. The ability to injectidnentating actions into a class without modifying
that class is a great debugging convenience. For instaspect can be written to print stack traces during
execution, to display formal parameter values on methaatiations, dump instance field contents at selected
events such as exceptions and in not-possible control fkow,Téese, and other creative aspect applications
in the debugging process, are easy to implement and of pahetlue.

3.1.4 Aspect Use in WebCom

This project has either trialled or included a number of asppplications within WebCom, including using
aspects for internals assertion checking and for loggiigtiag log messages.

The logging application highlighted the necessity to desigplications with aspects in mind. In the case
of WebCom, a mature logging implementation already exibefdre an aspect implementation thereof was
considered. With the restrictions of traditional OO desthis existing logging support was highly scattered,
and given the extensive use of logging it proved too timerfisive to refactor into an aspect. This is a case
of the damage already being done, and merely highlight®nsa® encourage aspects use.

There is also potential for the use of caching aspects willebCom. In particular, caching may be used
on referentially transparent operators to greéeat. These operators are already identified and optimised
within WebCom anyway, and the use of caching aspects magslirge these operators even to the extent that

43

3.2 Event API

they need not be explicitly segregated within WebCom in otd@pply optimisations. A uniform treatment
of operators, with cache optimisation for referentialrtsparent operators, would improv@@ency.

Debugging support aspects are commonly used to help ispabdems within WebCom, and illustrate
further aspect utility within WebCom, even if they are atifesm the deployed WebCom version.

However, perhaps the most interesting aspect applicatittindVebCom is the Event API, the focus of
the next section. This API facilitates informing interesparties of events within the WebCom core without
requiring this core architecture to propagate or even beeawafthese events. This application of aspects is
also invisible to the end programmer, and forms part of thelii® API, the subject of Chapter 4. Aspects
play a critical role in the overall design of the Module ARI that the API design is guided by a requirement
not to modify or pollute the core WebCom architecture.

The introduction of the aspect compiler and the proliferatf aspects behind the scenes in WebCom, is
also interesting from a paradigm point of view. The sectiorthe Event APl illustrates the use of aspects in
facilitating an event driven programming component wittiebCom. This Event API architecture may be
used, or abused, by endusers to program WebCom applicatimhsodules in an event driven fashion.

Presenting new programming paradigms for enduser modogggmming is a major theme of this disser-
tation. The Event API, not to mention the AOP support, addbéocapabilities already available to module
programmers. Note, that module programmers are free tongseanstruct aspects within the implementa-
tion of custom modules, hence the enduser availability oPAO

Furthermore,logic programming facilities will also be reaavailable later in the course of supporting
type checking. The type checker implementation involvefiregla general purpose resolver to the WebCom
architecture, and this resolver also makes logic progrargmiethodologies available to module designers.
In fact, the type checker module is interesting in that indietraditional OO, logic programming, and even
event driven techniques under the guise of the aspects iBwviet API.

3.2 Event API

§32 Event APl and Origins. <High-level description of the Event API. Reasons promptiexglopment of this AP
The Event API, part of the wider WebCom Module API documernite@hapter 4, is an interface providing
module writers with information regarding events occugrinithin the WebCom core, without requiring
modification to this core WebCom. This event informationilaality is crucial in éfective module writing,
yet ringfencing the vulnerable core WebCom from code pidliuis likewise essential. Modifying core code
for the purposes of implementing optional third party medushould justifiably be prohibited.

The Event API is implemented via aspects, but hides thisffaot Event API users. Aspects provide the
mechanism to make Event API users aware of events withouifyiregithe core WebCom classes.

The WebCom core consists of the backplane, providing modaléing and message passing, together
with some core basic modules. These modules include theectinon manager, the load balancer, the sched-
uler, the fault tolerance module, engine module and sgomatdule. However, these modules themselves are

44

3.2 Event API

not core. It is rather the roles and interactions of theseutesdwithin WebCom that is core. For instance,
the particular implementation of the scheduler module tsanorior core and may be replaced as desired by
equivalent scheduler modules. However, the scheduleisined to behave according to certain rules and
this is core to the WebCom machine. Historically, this iat#ion was encoded in a particular base scheduler
implementation and has evolved with changes to this imptgation. This is undesirable, since core object
specification moves based on reference implementatiorgelsawhereas the opposite should be the case.

This is true of all the core components, although the actophbict varies. The engine and security mod-
ules are relatively straightforward in their operation areemantics could be easily outlined. The connection
manager operates in a manner that often divorced from thex atbdules, and may be tackled in isolation,
something which simplifies specification. The remaining ales, the scheduler, load balancer, and fault
tolerance modules have necessary interdependenciesridahbir specifications into a single component.

The unfortunate upshot is that WebCom internals specificaiepends on the implementation of a set of
reference modules. It is essential therefore to protecktimplementations and their stability. And it is to
this end that the Event APl most serves a purpose.

The implementation of interesting additional functiotaln WebCom often involves the augmentation
of these core modules, and a consequent alteration of codellmepecifications. Typically, this specifica-
tion update need not really be required for the additionatfionality, e.g., the implementation of statistics
collection should be orthogonal to core module purposeprdatice, it is necessary to change core modules
to implement statistics generation. This is undesirable.

In the case of statistics module and some other cases, prgwstent data is the sole function of core
module changes required. And if more detailed core moduldifinations are necessary for the particular
extension demands, the extension will still also requirengwata anyway. So, even if an application still
necessitates core modifications, these can at least bataiigy limiting the event generation modificatiéns.

Reducing the need to modify core WebCom classes for everetrggon purposes is a first step in remov-
ing code pollution in core modules. The Module API, see né&épter, is designed to further reduce core
code pollution by addressing other typical requiremenexténsion writers, including module presentation.

It is critical to appreciate that code pollution prolifécat in the reference modules also pollute WebCom
core specification. This has made it virtually impossibléniplement alternative core modules, since the
specification is informal and likely to move from under anyesiative implementations. This situation
damages confidence in the kind of modular architecture tledt@@m professes.

3.2.1 Aspect based event system

§33 Event System Implementation Dfficulties. <A summary of the giculties-

Essentially, a mechanism is needed to inform interestetiepasf the occurrence of a specific events within
the core set of WebCom modules. This must be implementedhdtieast amount of modification in existing
code, and furthermore, be robust to changes in the base ameles. It should be possible to augment the

45

3.2 Event API

event set with new events, as determined to be useful indudavelopment, without requiring significant
modification. Neither should the addition of new events bleexable to changes in the core module code.

These requirements are articulated to highlight aspesngths and indeed the aspect based solution does
satisfy these requirements. In particular there is almosnodification in the existing WebCom, the only
modification being a trivial code rearrangement, entirelydonvenience.

Deck stacking aside, the aspect based implementatiomedthelow is superior to a tradition implemen-
tation, which could not avoid introducing event dispatceat relevant places in the core code. This falls
foul of all the inherent problems in such crosscutting arattecing, so despite any clever engineering, the
implementation will be crippled by this scattering.

Maintenance would be excessively timeconsuming. For el@mgmoving an event would mean locat-
ing and excising all dispatch instances for that code withéncore classes. Similarly, adding an event would
require locating, by hand, all positions in the code basera/ttés event occurs and inserting dispatch code.
Accidental error introduction aside, there remains a mobinheriting these events into subclasses. A tradi-
tion solution is just not feasible. It is impractical to inephent the reference classes, and module hierarchy
bases, in a template method fashion in order to permit ssetato acquire event hooks by very selective
extension of superclasses. It does not work either sinsenitf robust to the introduction of new events. A
new event would potentially mean changing the base clasgsatemplate method structures, necessitating
further changes in all implemented subclasses.

§34 Lightweight aspect events. <The aspect based solutien.

Aspects permit a robust event system implementation witimal modification to the existing code. The
implementation is straightforward also. Essentially,sbharce code positions of required events are captured
by pointcuts. It is worth noting that these events often haeperties suitable for concise pointcut capture.
For instance, operator triggering is an event of intered, the operator interface specifies the exact name
of the operation implementation method. So, a pointcutesgion can be made using wildcards to capture
all these operation methods, rather than do so by trackitegnial WebCom management and invocation
structures that may be subject to future change.

Once pointcuts have been designed to capture event losatiae event group per pointcut, advice can
be used to dispatch events indications. That is, each eypati$ captured by a specific pointcut, which is
then advised how to generate and dispatch corresponding @vjects. An aspect aggregates these pointcuts
and relevant advice, and also maintains the event dispatbh and listener lists. Event dispatch is done in
an essentially identical manner for each event type andfilefrem central management.

The reflection metadata at the pointcut advice can be usedriceparameters and details pertaining to
the generated event. For instance, join point metadataeasdxd to populate an event object with operator
and operand references in the case of an operator trigget. eve

Using aspects in a lightweight event system has many adyasitdeyond those described earlier. Dis-
abling events is then trivial, and may make sense in the WebGantext. The Event API system is only

46

3.2 Event API

intended to provide information to interested parties, ghavision of such data is not demanded or guar-
anteed. If a site administrator decides to optimise WebCarelp for basic job execution, then the event
system is overhead. With aspects, this overhead may thelintieaged, without requiring a recompilation.

§35 Adaptor Interfaces. <Obsfucation of aspect implementation. Presentation dftesyestem as traditional OO AR

Aspect based implementation presents sonfiécdities, especially in an environment that is new to AOP.
As such, it is desirable to minimise overlap between aspguiscore interfaces, reducing the threshold for
group developer contribution. Interfacing with aspectubsode requires some AOP familiarity and for many
developers in large systems like WebCom, there is little @diate requirement to learn aspect techniques.
Incorporating an aspect based subsystem needs to done inithahnecessary paradigm shifting.

The use of adaptor interfaces is important within the EvelL #ar exactly these reasofsThe adaptor
pattern is used to present a traditional event dispatgierese interaction to module developers. Specifically,
client application register for events and are called baithk @vent description objects on occurrence of these
events. Nowhere in client code is the aspect based implati@mbf the Event API visible.

Consider the example scenario of an event propagatiomtCligle expresses interest in a particular event
by registering with an Event APl management object, and deddo a listeners list. The aspects capture
events and dispatch them to the client code by way of this B&Bhmanagement object.

The Event API consists essentially of static elements.ehist lists are maintained on a class basis, as
are the event propagation callback methods used by thetasped whilst there is an indirection penalty,
it can be aggressively optimised. This penalty really csissdf the extra static class and of an additional
method invocation per event. The list management funclitynaf the static management class is required,
and eliminating this class would mean moving this functiiipo the aspect anyway.

The extra method call is to a small static method which maybedd easily. This inlining is simplified
since the method only requires data read access to the jésttelwithin the static management class. Because
this data is also static, references may be used within thet@spect.

The static middleman class might be incorporated into tlemesdispatch aspect at the cost of requiring
client code to register with the aspect, instead of with ticstéass. The registering would be done via a static
method in any case, so end users might still pretend thahtleeation were being done on a cléss.

The advantages of nonaspect client code is significant amthwte overhead, optimised out anyways.
There is benefit in facilitating third parties to ignore ttspact nature of the code and yet still apply the API.

3.2.2 Event API Implementation

§36 APl and UML. <An examination of the UML outline for the Event API orgarisat-
Figures 22 and 23 detail the implementation of the Event Afith Figure 22 illustrating the aspect imple-
mentation and OO masking. Note, class notation for aspe¢tss figure is incorrect but unavoidable.

The EventAPTAspect aspect maintains pointcuts capturing a range of eventsniiitie WebCom in-
ternals. Sample events include instruction creation amtwion, message transmission, graph memory

47

3.2 Event API

<<Aspect >>
EventAPIAspect
Event capture and dispatch aspect

-apis: Map
Witnessed WebCom machine instances

+newl nst ruct i onl nEngi neMbdul e()

New instruction pointcut and advice

+new nst ructi onl nVébCom()

New instruction pointcut and advice

+instructi onExecuti onl nEngi neMbdul e()
Instruction execution pointcut and advice

+i nstructi onRecei ved()

Receipt of instruction pointcut and advice
+instructionTransmitted()

Transmission of instruction pointcut and advice
+resul t Recei ved()

Receipt of result pointcut and advice

+backpl aneAddResul t ()

Receipt of foreign result pointcut and advice
+backpl aneSent Message()

Transmission of message pointcut and advice
+engi neAl | ocat edG aph()

Allocation of graph memory pointcut and advice
+engi neDeal | ocat edGr aph()

Deallocation of graph memory pointcut and advice
+engi neQueueNode()

Node queuing pointcut and advice

+engi neQueueResul t ()

Result queuing pointcut and advice

+engi neRun()

Engine start pointcut and advice

+engi neSendResul t

Return of result pointcut and advice

+engi neResul t Sent ()

Successful result return pointcut and advice
+schedul er Schedul el nst ructi on()

Instruction scheduling pointcut and advice

+ oadBal ancer AskFor O i ent ()

Load balancing pointcut and advice

+l oadBal ancer Queuel nstructi on()

Load balancing queuing pointcut and advice
+conmanRedi r ect To()

'WebCom redirection pointcut and advice
+conmanRenveDescri ptor ()

Client detach pointcut and advice

+conmanRel i nqui shd i ents

Relinquishing of clients pointcut and advice
+conmanCr eat eDescri ptor ()

Construction of a new descriptor pointcut and advice
+conmanDi sconnect Fronf)

Disconnection from parent pointcut and advice

+ ogger LogWr ni na()
Logged message pointcut and advice

+l ogger LogSever e()

Logged message pointcut and advice
+l ogger Log()

Logged message pointcut and advice
+l ogger LogFi ne()

Logged message pointcut and advice
+l ogger LogExcept i on()

Logged exception pointcut and advice
+l ogger LogFat al Except i on(

Logged exception pointcut and advice
+bef or eAPI LoadMbdul e()

Module load pointcut and advice

+af t er APl Loadbdul e()

Module load pointcut and advice

+bef or eAPI Unl oadModul e()

Module unload pointcut and advice

+af t er API Unl oadMbdul e()
Module unload pointcut and advice

I Relays to»

EventAPIManager
Listener and dispatch management for EventAPI Aspect

-listeners: Set
Listeners list

+addListener(in |istener:EventAPIListener): void

Attach listener
+removeli stener(in |istener: Event APl Listener): void

Detach a listener

#getlisteners(): Iterator const

Return listeners

+newl nstructionl nEngi neMbdul e(in api:APl,in instr:Instruction): void

Relay new instruction events

+newl nstructionl nVebCon(in api:APl.in instr:lnstruction): void

Relay new instruction event
+instructionExecutionl nEngi neMbdul e(in api: APl in instr:instruction): void

Relay instruction execution event
+instructionReceived(in api APl in instr:instruction): void

Relay receipt of instruction event
+instructionTransmitted(in api:APl.in instr:instruction,in desc:Descriptor): void

Relay transmission of instruction event
+resul tReceived(in api:API.in rst:Result): void

Relay receipt of result event
+backpl aneAddResul t (in api:APl.in rst:Result): void

Relay receipt of foreign result event
+backpl aneSent Message(in api: APl,in meg: Message): void

Relay transmission of message event

+engi neAl | ocat edG aph(in api:APl.in cq:CondensedG aph): void
Relay allocation of graph memory event

+engi neDeal | ocat edGraph(in api : APl,in cg: CondensedG aph): void
Relay deallocation of graph memory event

+engi neQ in api:API. in node: Node): void
Relay node queuing event
neQu t(in api:APl.in rst:Result): void

g
Relay result queuing event
+engi neRun(in api:APl): void
Relay engine start event

+engineSendResul t(in api :APl.in rst:Result): void

Relay return of result event
+engi neResul t Sent (in api: APl in rst:Result): void

Relay successful result return

+schedul er Schedul el nstruction(in api:APl,in instr:Instruction): void

Relay instruction scheduling event
+l oadBal ancer AskForQdient (in api:API): void

Relay load balancing event
+l oadBal ancer Queuel nstruction(in api:APl,in instr:instruction): void

Relay load balancing queuing event
+conmanRedi rect To(in api:APl.in source: Address,in target:|netAddress): void

Relay a WebCom redirection event

+conmanRenoveDescriptor(in api:APl.in desc:Descriptor): void

Relay client detach event

+conmanRel i nqui shA ients(in api:APl,in address:|netAddress): void

Relay the relinquishing of clients

+conmanCr eateDescriptor(in api:APl,in sock: Socket): void

Relay the construction of a new descriptor

+conmanDi sconnect Fron(in api: APl in address: | net Address): void

Relay disconnection from parent
+l ogger LogVr ni ng(in nmessage: String): void

Relay a logged message
+l ogger LogSevere(in message: String): void

Relay a logged message
+loggerlog(in nessage:String): void

Relay a logged message

+l ogger LogFi ne(in message: String): void

Relay a logged message

+l ogger LogException(in e: Exception): void
Relay a logged Exception

+l ogger LogFat al Exception(in e: Exception): void

Relay a logged exception

+bef or eAPI Loadbdul e(in api :APl.in module:String): void

Relay a module load event

+af t er AP LoadVbdul e(in api:API.in nodul e: Mbdule): void

Relay a module load event

+bef or eAPI Unl oadMbdul e(in api:APl.in module:String.in force:bool ean): void

Relay module unload event
+af t er APl Unl oadNbdul e(in api:API.in nodul e: Mdule,in force:bool ean,in consent:bool ean)

void

Relay module unload event

Figure 22: UML Diagram Event API Part I.

48

3.2 Event API

<<Aspect >>
EventAPIAspect

+newl nst r uct i onl nEngi neMbdul e()
tnewl nst r uct i onl nViébCont)

+ 0

.. 0

+bef or eAPI Unl oadibdul e()

| +af t er API Unl oadibdul e()

<<Interface>>
EventAPIListener
Listener interface for Event API

+new nstructi onl nEngi neMbdul e(in api : APl
in

instr:lnstruction): void

New instruction events handler
+new nstruct i onl n\VebCon(i n api: API,
New instruction event handler

ininstr:instruction): void

+i nstructi onExecut i onl nEngi neMbdul e(in api: APl ,
ininstr:instruction): void

Instruction execution event handler

+instructi onRecei ved(in api:APl,in instr:Instruction): void

Receipt of instruction event handler

+instructionTransnitted(in api:APl,in instr:instruction,
in desc: Descriptor): void

Transmission of instruction event handler
voi d

EventAPIManager

+resul t Recei ved(in api:APl,in rst:Result):
Receipt of result event handler

+addLi stener(in listener: Event APl Li stener): void
+renoveli stener(in |istener: Event APl Li stener): void
+get Listeners(): Iterator const

+new nstructi onl nEngi neModul e(in api: API,
+newl nstructionl nWebCon(in api:APl,in instr:Instruction):

+bef or eAPI Unl oadMbdul e(i n api : APl ,in nodul e: String,
in force:bool ean): void
+af t er APl Unl oadMbdul e(in api: APl,in modul e: Modul e,
in force:bool ean,in consent: bool ean):

ininstr:instruction):
void

void

voi d

+backpl aneAddResul t (in api: APl in rst
Receipt of foreign result event handler

+backpl aneSent Message(in api: APl ,in msg: Message) :
Transmission of message event handler

+engi neAl | ocat edGraph(in api: APl,in cg: CondensedGraph):
Allocation of graph memory event handler

+engi neDeal | ocat edGraph(in api: APl in cg: CondensedG aph) :
Deallocation of graph memory event handler
in node: Node):

Resul t): void

L Manages » void

voi d
voi d

+engi neQueueNode(i n api : APl , voi d

Node queuing event handler

+engi neQueueResul t (in api:APl,in rst:Result): void

Result queuing event handler
+engi neRun(in api: APl): void
Engine start event handler

+engi neSendResul t (in api: AP, in rst
Return of result event handler

Resul t): void

+engi neResul t Sent (in api: APl in rst:Result): void
Successful result return handler
+schedul er Schedul el nst ructi on(in api : API,
in instr:instruction)
Instruction scheduling event handler
+ oadBal ancer AskFor i ent (i n api: APl)
Load balancing event handler
+ oadBal ancer Queuel nstructi on(in api: AP,
ininstr:instruction)
Load balancing queuing event handler

voi d

voi d

voi d

EventAPIListenerAdaptor
Blank listener interface implementation for Event API

+conmanRedi rect To(i n api : APl in source: Address,
in target:inetAddress): void

WebCom redirection event handler

+newl nstruct i onl nEngi neMbdul e(in api: API,in instr:instruction):
Blank implementation

+newl nstruct i onl nVebCon(i n api : API,
Blank implementation

+..0

+..0

+bef or eAPI Unl oadMbdul e(in api
Blank implementation

+af t er API Unl oadbdul e(in api : AP, in nodul e: Mdul e, in force: bool ean,
in consent: bool ean): void

voi d
ininstr:instruction): void

API,in modul e: String,in force:bool ean):

Blank implementation

voi d

+conmanRenoveDescri ptor (in api: APl , voi d
Client detach event handler

+conmanRel i nqui shCl i ents(in api: APl ,
Relinquishing of clients handler
+conmanCr eat eDescri ptor (in api: APl in sock: Socket)
Construction of a new descriptor handler

+conmanDi sconnect Fron(in api: APl ,in address: | net Addr ess)
Disconnection from parent handler

+1 ogger LogVar ni ng(i n message: String): void

Logged message handler

+ ogger LogSever e(in message: String):

in desc: Descriptor):

in address: | net Address): void

_ad_ap_l S‘D

voi d

voi d

void

Logged message handler
+l ogger Log(i n nessage: String):
Logged message handler
+ ogger LogFi ne(in message: String):
Logged message handler
+| ogger LogExcept i on(in e: Exception):
Logged Exception handler
+ ogger LogFat al Except i on(in e: Except i on)
Logged exception handler
+bef or eAPI LoadMbdul e(in api
Module load event handler
+af ter APl Load\bdul e(in api
Module load event handler
+bef or eAPI Unl oadNbdul e(in api: API,in modul e: String,
in force: bool ean): void

Module unload event handler
+af t er API Unl oadNbdul e(in api: API,in modul e: Mbdul e,

in force: bool ean,in consent: bool ean):
Module unload event handler

voi d
voi d

voi d

voi d
API,in modul e: String)

voi d

APL,in modul e: Mdul e): voi d

voi d

Figure 23: UML Diagram Event API Part Il.

49

3.2 Event API

allocation, etc. At event capture, pointcut are advised tmextract pertinent data from the reflective data
structures. For instance, at new instruction events, theGl instance is stored in a®I reference, and
the actual new instruction in dinstruction reference. This event data is then passed to interestedsclie

The actual propagation is done via theentAPIManager class, which maintains and manages interested
listeners. When the aspect raises an event, it forwards & end relevant data to a matching method in
theEventAPIManager class. This method then informs registered listeners oéteat.

Interested parties implement tlEwentAPIListener interface, or alternatively implement the blank
adaptorEventAPIListenerAdaptor, from Figure 23. This interface lists the matching methdusd the
EventAPIManager class invokes to forward event notifications it receivesfitbe aspect.

Since these event interfaces are registered viaébgésterListener method of the manager class, the
Event API appears as a traditional Observer pattern to rarty programmers. Note, only the registration
methods irEventAPIManager and theEventAPIListener interface need be visible to third parties, making
the pattern appear traditional even though it is implenteuia theEventAPIAspect aspect.

A developer wishing to use of the Event API need only implenaand register &ventAPIListener
interface to respond to available WebCom events. A basimpleof this relatively straightforward devel-
opment cycle will be demonstrated in the next section. Hewnehis is still not a fully workable solution to
end programmer requirements, since it misses mechanistirettly query the WebCom core and to request
particular WebCom actions. These are the subject of the Mo#ll, the focus of Chapter 4, which together
with the Event API constitutes a fully featured API while mi@iining the integrity of WebCom internals.

3.2.3 Applications

The production of an event trace tool forms a simple illugtraof the Event API. This tool reports on all
exported event detail from the WebCom core in text formathSutool has applications both in debugging
WebCom interactions and in providing information on inedrtWebCom state transitions. An events listing
may also partly substitute for a core dump within a speadlid/ebCom debuggér.

The development of the tracing module demonstrating the eg&vent API application. The main pro-
gramming is contained within tiiebugEventAPIListener extension of th&ventAPIListenerAdaptor
class. This listener maintainPaintWriter object, or output stream, to forward details of generatesess
This output is constructed with the listener, together whiitdown hooks to close and tidy resources.

The DebugEventAPIListener responses to all the generated event endpoints availablewmps a
text based description of each to the maintained outpuasireThis is the full extent of the programming
required, and consists of little more tha®loutput statements in the listener interface methods.

There is some additional framework code outside ofitlieugEventAPIListener class that has to do
with a supporting skeleton module and with listener loadind unloading. This code is minimal, comprising
a module to just perform listener registration, therebytistg the event tracing operation. The mechanism
by which this simple module is loaded into WebCom and set grafion is the focus of the Module APl and
covered in the next chapter.

50

3.2 Event API

& Py &
o > >

Figure 24: Odd parity testing graph.

By way of brief example, consider the graph in Figure 24. Tihisar graph returns a Boolean indicating
whether the input integer has odd parity. An execution efraot of this graph is included in full in Appendix
B, together with an outline description of the event seqaefdis is useful for a detailed understanding of
WebCom processing, but is unnecessary for the purposesinstead, some illustrative sample events will
give the necessary flavour.

The following event illustrates construction of a new instion to handle the toplevel graph as a dynamic
operator. The new instruction refers to the condensed tpeedthough the reference is not so helpful.

newInstructionInWebCom :-

webcom. core.Instruction@le6e305
operation main

The next example event demonstrates the capture of a mesaagaction within WebCom. At this point,
the WebCom core is passing a message containing the topietreiction created abové.

backplaneSentMessage :-

EngineMessage: source = agador/143.239.211.35 module value: top level,

destination = agador/143.239.211.35 module value: engine,type = INSTRUCTION,
data = webcom.core.Instruction@le6e305

The final example event illustrates event callback on thewti@n of an instruction within the engine module.

instructionExecutionInEngineModule :-
webcom. core.Instruction@9abc69
operation webcom.nodes.core.EvenOp

These examples demonstrate some of the events availaldagarre. There is a wide range of events that
interested parties may listen for, encouraging the desigrersatile applications. Although the event trace
application is somewhat trivial, it is nevertheless quieful. However, more potentially interesting example
applications have been deferred until the Module API harsésicture has been outlined, and there will be
further demonstration of the Event API within useful modudad applications in the next chapter.

3.2.4 Final remarks

This general pattern in using aspects to engineer an evst@s\exposing conditions and occurrences, whilst
protecting the integrity of a core software artifact, maydaployed in other circumstances. Although in

51

Chapter Notes

WebCom, there is no other immediate cohesive core blockrttigiht benefit from a similar design, this
general means of ringfencing fragile code can still be rétisdenefit in other applications.

The Event API system provides yet another example of howcspeay be used to cleanly manage
difficult crosscutting concerns. In this case, the aspect degigplifies the implementation of what would
otherwise be a severely scattered event dispatch systeneoMr, it would not have been practical to retrofit
such a scattered event dispatch mechanism in the core cedelhadhis sense, AOP has enable functionality
which otherwise would have been excessively timeconsumaimgplement and maintain.

The next stage of development is to fit this Event API into aewithodule support framework, including
load, query and operation mechanisms. This will form thel@mgntation framework for the eventual type
checking application, and is the subject of the next chapter

Chapter Notes

1The use of a small Jar library is required at runtime to enald@gipect constructs, though.

2Although phrased in terms of adding a new component to a syshésmprioblem should have been addressed in isolation even if
security was an initial element of the software. Presemntatiderms of refactoring simply highlights the particularssoutting concern.

3The diference being that on method invocation control flow lies detsiie method being called, whereas upon method execution,
control flow lies within the called method.

4The distinction between instance and static members is motke snlaspects than in classes. The typical arrangementtishinge
is a single instance of a particular aspect per Java Virtuathvhe. In this circumstance, thefférence between static and instance
members is simply one of initialisation. It is possible, howete arrange aspects on a per object or control flow basishinlwcase
the diference between instance members and static members is the sanckaases.

5Even if policies vary between classes, they may still be mahagagtrally to greaterfect than in local caching implementation.

5The actual goal of the Module AP! is to remove all reasons to fgadire modules to achieve particular extensions. But it remai
the case, that events are a separate concern and explaitkevByent API is really a component of the Module API.

"The original ideas for adaptor interfaces were suggestdteii Power.

8Which in fact it is since the aspect is likely to be realised kgpéct as a class together with additional code to trap {hecas
pointcuts and forward to the aspect advice. The advice igaldi likely to be implemented as methods in the implementatiassc

9A WebCom debugger or replayer is under current developmethtaithough, eventually may not be based on the Event API
architecture, still represents a potential applicatiothefEvent API.

10t is the same instruction because the references match.

52

Module API

he Event API can be complemented by providing support forftwiher areas within the sphere of

module programming. These areas include the mechanismsesnantics for loading, unloading

and configuring modules into a running WebCom system, tegetith the means of querying and
requesting the core WebCom to undertake particular actorizehalf of a module.

The Event API together with these additional componentgaltectively referred to as the Module API.
However, this chapter will focus almost exclusively on tive new components, only mentioning the Event
API in passing. There is Module API term is often used to réfethe querying and action operations
exclusively, note. This usage excludes both the loadinghan@ism and the Event API.

The design philosophy behind the Module API will be desdiltegether with sketch implementation
details in the first half of this chapter. The remainder cesamples of the application to information gath-
ering and actioning operations within the module loadingtert. These examples illustrate the versatility of
the new organisations and how they are used to engineer raorasive WebCom operation modes.

4.1 Module API

The Module APl implementation makes two primary modificasi®o existing WebCom structures. The first
adds amPI class to represent a single WebCom instance, and to féeifjizery and operation interactions
with that WebCom. Although, existing classes may be useéfer to a WebCom instantgit is better to

53

4.1 Module API

abstract the concept of a running WebCom from its implenemtaTheAPI class, detailed later, is also the
handle returned by Event API callbacks referencing theatfmer context sourcing a particular event.

The second main programming change involves modifying tee@@m internals to arrange for uniform
loading and unloading. The adoption of a uniform load precasd retrofitting it to core modules, greatly
improves the scope for third party modules. Such modulestheybe programmed and incorporated seam-
lessly into WebCom instances in a simplified manner. Theadithg triggers and callbacks together with a
refined addressing schefrferm the dynamic load mechanisms and will also be coveredarerdetail later.

The most interesting facet of the Module API, though, is ia thworking of the module role within
WebCom. Changes within the Module API introduce a more piweand flexible view of modules. So,
even while the changes are fundamentally simple, they ptessubtle and important change. These changes
are incremental, extending the existing module concepaaptying it in circumstances previously either not
possible nor envisioned. The next section considers thispesition and module philosophy.

4.1.1 Philosophy

Reworking the module code raises new potentials for the heasltstem, include the promotion of modules
to first order elements within WebCom. While currently, madudre the main component of WebCom, the
new structures make it practical to specify that moduleglaenly permitted WebCom components. This
is, modulo some base plumbing, reworking the WebCom destgrai completely plugin architecture.

With a plugir? architecture, there is increased facility to isolate aratgmt core WebCom components.
These core plugins, or modules, may be detached and stnongfgnced, in this way reducing code pollution
and maintenance trauma. This extends the guiding philgsepiployed in the use of aspects earlier.

Another main change in WebCom practice is the introductiatyoamic module loading and unloading,
as a byproduct of the uniform loading mechanism. This is sttgnd scope for changing the running Web-
Com environment, for changing the capabilities and the atfer support available. There is even potential
to load core WebCom facilities and even instances, in somsese as modules. This is particularly useful in
conjunction with the IDE and other graphical WebCom toadswél be seen in the examples later.

Although these constitute the primary changes in outlihey neglect some of the lesser new features.
These are explored somewhat, but not exhaustively, in taenple modules and include concepts such as
GUI modules, bridge loader modules, the construction of @éh applications from collaborating basic
modules, and the aforementioned use of modules to instaMiabComs and other WebCom artifacts.

§37 Completely Plugin Architecture. <webCom as a confederation of interacting modules
Nearly everything within WebCom may be considered as a pialenodule, and implemented via the module
construct. That is, all functionality outside of the basiaggh representation and handling, and the otherwise
bare minimum in WebCom could be implemented in module form.

Take the Eclipse IDE as a model, being as it has illustratedptirely plugin design philosophy to a
wide audience. In Eclipse, everything barring the boogsisamplemented in a plugin. Now WebCom itself

54

4.1 Module API

already has a strong module philosophy, and with a subtfeisiewpoint, could easily be similarly viewed
as module-everywhere or purely plugin. The ramificationthisf for future design are significant.

Promoting a purely plugin WebCom architecture does not nteahmodules are all equal. It should
be emphasised that there are two very distinct classes ofilesdThe core modules, like the engine and
connection manager, are fundamental to WebCom operatmaramstance of each must always be present.
Noncore modules fall into a category of entirely optionaldules. A site administrator may load or unload
these modules to form WebCom configurations.

Because there are firmly two classes of modules, loadingumify is not perfect in that the bootstrap
must always orchestrate a core set of modules. But asidetfi@nthe interface fbered to modules can be
entirely uniform. Once a core WebCom can been acquired, @lutes operate according to the same rules.
It is the case, of course, that the more important core medalteady have defined interactions, which bind
these modules into a cooperating tool to drive graph rednsti

Although core modules are not independent, there are naresgents for optional modules to be depen-
dent on other modules. There will, presumably, be depenegona core WebCom modules and for instance,
on the message passing structures available via a backplashde, but there is no reason why optional mod-
ules need cooperate with other modules to perform taskso@ptmodules may either stand alone modules
or work in a larger grouping of modules directed at some goal.

The basic WebCom module is defined as a cohesive block of codmllaborative element, that may
be added or removed from WebCom to provide or support additifunctionality. The module concept is a
design construct for the aggregation of code, but one coemtfor developers of WebCom features.

The interface to optional modules is reasonable straightfal to state, contrasting with thefidicult
interactions in core modules. The optional modules podsasger interfaces, facilitating a exploitation of
plugability. The goal, although flicult, should be to facilitate similar levels of plugabilitycore modules.

The module everywhere notion that this suggests is a veriplegircumstance. For example, the ability
to treat modules uniformly helps in the development of uselstsuch as the SysTray application, a back-
ground GUI widget providing access to WebCom. By virtue ofdume proliferation, this application is little
more than a GUI module loader tool, itself a module, with WeliGeatures being made available also via the
module loader. The implementation of this applicationcdssed later, as a module itself leads to a variety
of convenient launching scenarios.

§38 Ringfence Core Machine. <Discussion of the use of the Module API to promote a leanes WgbCom implementatien
A lightweight view of optional modules is a helpful softwaseganisational tool, but not one limited just to
the implementation of additional functionality. There anany core features which could be managed by
this approach. These include for instance, logging, claadihg, state server and client, database operations,
etc. These functions can be implemented conveniently \gaue of optional noncore modules and such
implementation has a desirable trimmirt@eet on the core code base.

In addition to not strictly fundamental functions withinettWwebCom core, there has also been a ten-
dency to implement new WebCom features by augmenting this.cbhis is a destabilizing behaviour which

55

4.1 Module API

should be discouraged within the WebCom design. Applyinvg features within the WebCom core degrades
integrity and cohesion, confuses core documentation aofieatimes unnecessary.

In practice, however, there hasn't always been a workalbdereltive available. The Module APl aims to
plug this gap with optional noncore modufe$he Module API and purely plugin view of WebConffers a
safer, cleaner and more robust means to implement WebCanstahs. Additional, nonbasic functionality
can be provided by means of new modules.

Internal modules need to be pared to the bone and set in $torksign, maintain

The core modules should only include the barest minimumtfonality, suficient to arrange graph re-
ductions only. This includes the backplane support, theneotion manager, scheduler, load balancer and
fault tolerance modules, together with an engine moduldémpnting the basic WebCom operations, with
each of these elements striped of unnecessary functipnalie security manager, is typically implemented
via a blank interface, and so is not a concern in core bloaimmsation.

Typically, what is imagined to be core is not really. For arste, the transmission of class descriptions to
peers is not properly a core operation. If peers do not haestijuired classes to implement an operation, that
operation will be returned to the originator via other WebhCchannels. But the current core implementation
of a class server and client structure presents drawbacksn$tance, it is not straightforward to remove the
class serving facility. Although it may be configured notta rit still represents a separate initialisation and
configuration step that would be better served within theéaork of a module. Then if the site administrator
does not require the class server, the whole module neecerioatied.

The configuration of somewhat primitive functionality mag imanaged by site administrators using the
plugable nature of WebCom configuration in a simple and eyeahic manner. This dynamism is currently
not available with the present configuration schemes andele@donger execution cycle view of WebCom.
The present configuration mechanism is oriented towardsboé\WebCom executions mostly, whereas a
more dynamic loader scheme supports a pervasive, alwaifaldeaNebCom operation.

Most support considered core currently may not be so, andbraauitable for optional module imple-
mentation. There is great benefit in forbidding unnecessarg module changes and the promotion of a
module-everywhere approach is a step in this direction, @&splid alternative modular design is clearly a
better place to implement functionality. That said, it cainsso be denied that there are occasions when the
core modules are the correct place to make changes.

Core modules are not special. They should ideally be progr@enin exactly the same manner as op-
tional modules, modulo the load discrepancy. So, while mearie module interaction is current done by
direct method invocations on supporting modules, they tighbetter served using methods available in the
Module API, to be described presently. These facilitiesadready available to the core modules anyway,
and the modules may as well leverage these generic access tadloer than use direct references.

Historically, core modules have depended greatly on th&daoe interface, which in many ways, has
been used to refer to the particular running WebCom instaiibe Module API includes a newPI class
to play this role, and avoids problems in using the backp&eoth machine identifier and implementation.

56

4.1 Module API

This is not a major concern, until the presence of two bacigdavithin a single WebCom machine is consid-
ered. Although this is not a currently permitted configunatithere is little technical reason why this should
be the case. There are interesting WebCom topologies ingpitahle via the use of backplanes, since back-
planes themselves are also modules and so may be pluggedhetdackplanes. This could conceivably be
used to implement module chainings and hierarchies intstraicrather than policy based approaches.

Using the Module API within the core modules might also heiiinternals documentation. It would, at
least, help determine border protocols within core modulerfaces, since such border interactions would be
via the Module API. It may be that a core version of the API isded. Some of the core module interactions
are coupled tightly, something which should not be appaepublic users of the Module API, and which
may be hidden within a protected core Module API.

The core modules will always be core, though, regardlesshaftiier they use the API. Their interfaces
denote required functionality which the Module API helpsalgple from module implementation.

§39 Module Loader. <Notes regarding the load and configuration processes forutess
The use of the Module APl in WebCom configuration has alreanbmentioned to some extent. This and
the notion of swappable or dynamic modules are the pointst@with regard to module loading procedures.

The Module API sets out a definite mechanism for loading arldagiing modules. Previously, it had
been acceptable to manage this in ad hoc fashion, sincegheofimodules was more limited. Module load
and unload semantics is an essential key in promoting Web&oarmodule-everywhere architecture.

The load mechanism is straightforward. Modules are loadezhaatically at the WebCom bootstrap stage
if specified in a particular configuration file. Additional chdes may be loaded later from within WebCom by
any element with access to aRI reference, i.e., via proper procedure within the Module. ARbdules are
constructed using a no-argument constructor for histbreasons, but arefiiered an initialisation callback
once they have been attached to their target backplane éme laey further WebCom configuration.

The unloading process is similar. Modules are unloaded dGten destruction, or as specified by
Module API actions. In order to preserve internal stateretae currently restrictions on unloading core
modules, but optional modules are always detachable. Mgdale dered a chance to perform specific
unload operations, or to softly refuse unloading. Howetleg, Module APl man be instructed to force an
unload if necessary, the module beirfteoed notification of this also, but no right of refusal. Thectmanism
will then ignore any further module resistance.

The loading and unloading is more significant than the achethanism, and may be used to replace
currently loaded modules, or to add modules required fociipeperations. There is potential to manage
module dependencies, indeed there is an iritiglo object structure to support future work on this.

This initial approach may be improved, particularly in reygo unload semantics. For instance, in-transit
messages referencing an unloaded module lose an endpodht ng&2ssages may be dropped, rather than left
outstanding, so as waiting modules may be notified of theitextion in the peer message endpoint.

As noted earlier, swappable modules mean that basic Web@afigarations may be created and left
operational. User desired functionality can be dynamydatiorporated as required by the WebCom operator.

57

4.1 Module API

In particular, there is good means to run WebCom as a backdrtask in an interactive desktop. This
background WebCom may service WebCom operations from arafhgpurces, the user, other applications,
network peers, the operating system. Such an operation m@dstep toward a WebCom operating system
implementation. Later examples in this chapter demorestitedt this operation mode is practical, and at
illustrate how WebCom might evolve toward an operatingesysimplementation.
A wider range of optional modules means a wider range of fanatity and configuration options

within WebCom. The loader mechanism provides for the sessrilecorporation of both core behaviour
and lightweight functionality. To the enduser, this can ifest as rich versatility in the WebCom application.

4.1.2 Design

The section takes described the various classes in the l@dRi, aimed at illustrating the module writing
process. It begins by considering tMedule superclass which modules must implement, and describes
communication mechanisms available to module writers. Alfeclass and components are then outlined,
illustrating the action and query facilities available toduale writers. There is a final section describing the
module load and unload procedures.

§40 Module. <Description of the facilities present via tiledule interface and available to third party module writers

Module writers have access to a number of Module API reseu@@erform communications and actions.
In regards communications, the previously discussed EABhtlescribes means by which internal elements
of WebCom may communicate with user written modules andeséagnt information.

While third party modules cannot augment the set of evengsetls existing support to provide an Ob-
server pattern within user written modules. Each subclé®odule, the basic abstract interface for all
modules, is prefitted with event dispatch and listener ligintenance features. Implementing an additional
heavyweight event system from a module is a matter of sutiegrio particular methods and interfaces.

The other main communication mechanism available to modriters, and the only one which facilitates
intermachine communication, involves WebCom messagéamaasSubclass oflodule are required to im-
plement a callback to handle messages destined for thatlenothese messages are sent viaitvei onAPT,
discussed presently, and are formattedlexssage subclasses. Actual data content and interpretation is left
to the discretion of the module writer. So, module writershimg to pass messages to separate machines,
may implement a nelessage subclass to use with the builtin message passing routines.

Messages are addressed by meansdfiress classes. This class provides a specification for destimatio
machines by either internal socket reference or by Intexdeétesses. The target module is currently specified
by module classname, although this is under review and mapgghin the future. The important core
modules may be directly references using certain constaoti is not necessary to know the specific core
module implementation in order to address it.

TheModuleInfo classes provide module metadata, and are named conform@gdaming structure so
the system can automatically find metainformation for patér modules. Th#éoduleInfo for a particular

58

4.1 Module API

<<Abstract >>
Module
Interface for WebCom modules

-api: APl

Reference to WebCom system and facilities

-event Li st ener Types: Vect or

List of EventListenerType objects defining module events and interfaces.
-listeners: Hashtable

Listeners for module events

RGEvent
WebCom Module event interface

+processhessage(in m Message): void

Process a WebCom message sent to this Module

+Modul e()

No arg constructor for reflection

+get APl (): APl const

Get the currently assigned API context

+load(in api:APl): void

Called after module loading for module specific initialisation
+unl oad(in api: API): bool ean

Called to indicate module is to be unloaded

+set APl (in api:API): void

Used internally to assign API objects

#assi gnedAPI (in api:APl): void

Interface method to extend in order to perform module specific actions on a setAPI call.

-mask: int

Mask to enable subevent types
-consuned: bool ean

A handled flag

+source: Mbdul e

The Module source for this event

+RGEvent (in mask:int,in source: Mdul e)
Constructor

+get Mask(): int const

Get the event mask

+get Mbdul e(): Mbdul e const

Get the event source

+consume(): voi d

Mark the event handled

+registerEvent (in eventName: String,in interfaceName: String,in methodNane:String,in mask:int): void . 40 bool .
- +
Register a new Module event i sConsumed() :_bool ean cons
Check if event is consumed already
+addLi stener (in event: O ass,in |istener:EventListener): void
Add a new event listener to list
+addLi stener (i n event Ol assName: String,in |istener:EventListener): void
Add a new event listener to list
+renveLi stener (in |istener: EventListener): void
Remove a listener
+di spat chEvent (in event: RGEvent): void
Dispatch a new event to interested listeners
| Backplane | | ConnectionManagerModule | | EngineModule | | FaultToleranceModule | | LoadBalancingModule | | SecurityModule |
| BackplaneMessage | | ConManMessage | | EngineMessage || FaultTolerar je || LoadBalancingM || SecurityMessage |
Message
Message class interface
-source: Address
Message source
-destination: Address Address

Message destination
-timeSent: Date
Timestamp

-data: Serializable
Message body

-type: int

Subclass specific typing

+Mbdul e(in source: Address, in destination: Address,in type:int,in data: Serializable)
Constructor

+get Source(): Address const

Get the Module source

+get Destination(): Address const

Get the Module destination

+get Type(): int const
Get the Message type
+getData(): Serializable const

Get the message body

+get Ti neSent (): Date const
Get the timestamp

Figure 25:

59

+TOP LEVEL; String

+ENGINE: String

+LOAD BALANCER String
+FAULT TOLERANCE: String
+CONNECTI ON MANAGER: String
+SECURI TY_MANAGER: String
+SCHEDULER _String
+BACKPLANE: String

-inet Address: | net Addr ess

- descriptor: |netDescriptor
-nmodul e: String

+Addr ess(in i net Addr ess: | net Address, i n modul e: String)

+Address(in i net Descriptor: | netDescriptor,
in modul e: String)

+get Modul e(): String const
+get | net Address(): | net Addr ess const
+get I net Descri ptor(): I netDescriptor const

UML Diagram Module APllodules andMessages.

4.1 Module API

<<Abstract >>

Module

| Backplane |

ConnectionManagerModule

| EngineModule |

| FaultToleranceModule |

| LoadBalancingModule |

| SecurityModule |

| BackplaneModulelnfo | |

ConnectionManagerModulelnfo

|| EngineModuleinfo ||

FaultToleranceModulelnfo

LoadBalar dulelnfo

ityModulelnfo |

v

Modulelnfo
Module Metadata

Class

+name: String

Display name for Module
+desc: String

Display description for Modul
+deps: String[]

Array of Module dependancies

e

“+Nodul el nf o()
No arg constructor for reflecti
+getName(): String const

Get display name for Module

Get Module dependancies

+get Description(): String const
Get display description for Module
+get Mbdul eDependenci es(): String[] const

ion

Figure 26: UML Diagram Module APoduleInfo.

module should be contained in the class with the original ml@dame sfiixed with ModuleInfo. So, if
metadata is required for modubd ah, the system expects to find it in tldahModuleInfo class® The

ModuleInfo class provides metadata hooks Mardule display names and descriptions, together with an

currently unsupported list of module dependencies.

Module writers must subclag®dule and implement their basic module elements. This class delba

automatically, or on demand, and subject to the specific &mtions described below. The load call provide
hooks for module initialisation, event registration anldestpreparation work. If the module is to use message
based communications, the write should prepare a custonlesshofMessage, and implement the module

processMessage method to process these messages. The message routinglischantomatically. If in-

terested in internal WebCom events, the module must registie the EventAPIManager as in the previous

chapter. If it wishes to provide interested parties withemsdo heavyweight events generated within the mod-
ule, there must also be some initialisation and registnatmde, together with dispatch code at the relevant

points. Module writers should also implemerifi@uleInfo class to provide module metainformation.
Figure 25 diagrams the bagiodule andMessage interfaces. Figure 26 illustrat@®duleInfo.

§41 API Class. <Queries and operations available to third party module enst

All modules have access to &RI object, via theigetAPI methods. ThifPI class represents the WebCom
machine instance, modules getting A% referring to the WebCom machine onto which they are loaded. |

particular, this means a module may only be loaded on one \f@hiGstance within a JVM.

60

4.1 Module API

API
WebCom Machine Reference

-backpl ane: Backpl ane
Reference to backplane
-information: Infornati onAPI
Reference to query interface
-action: ActionAPl

Reference to operation interface
-heap: Map

Persistent memory storage

+API (i n backpl ane: Backpl ane)

Constructor

+newébCon(): API

Make a new WebCom instance

+registerListener(in |istener:Event APl Listener): void
Register an Event API listener

+der egi sterLi stener (in |istener:Event APl Listener): void
Deregister an Event API listener

+get | nf ormati onAPI (): I nformationAPI const

Get the information interface

+get Acti onAPI (): ActionAPl const

Get the operation interface

+mal | ochbdul eMemor y(in nodul e: Mdul e): Map

Allocate persistent memory for a module

+freeMbdul eMenory(in modul e: Modul e, i n mem Map) : bool ean
Free module memory

+1 egi ster Modul eMenory(i n modul e: Modul e, i n mem Map) : voi d
Register existing memory with the heap

+der egi st er Mbdul eMenor y(in modul e: Modul e, in nem Map) : voi d
Deregister existing module memory

+equal s(in anAPl: Cbj ect): bool ean

Test equality of API references

+hashcode(): int

Get an API hashcode

InformationAP|
Query interface for API

ActionAPI
Operation interface for API

api: API

-api: API

+get APl () APl const
Get parent AP| object

Get the Address for the indicated Module

Get Address for Module on remote machine
+get LoadedMbdul es(): String[] const
Get list of loaded modules

Get reference to indicated module
Return true if indicated module is loaded

Is the indicated module a loaded core module
+dynani cTopol ogyEnabl ed(): bool ean const
Return true if redirecting enabled

+get Execut abl eNodeQueueSi ze(): int const
Get the size of the executable node queue
+engi neRunni ng(): bool ean const

Return true if engine is started

+get Li steningPort(): int const

Get WebCom port

+get Local Host () | net Address const

Get localhost details

+get Parent Address() : | net Address const
Get parent details

+get O i ent Addresses(): | net Address[] const
Get client details

Get an authorized client for the given instruction
Get list of authorized clients for instruction

Is given client authorized for instruction?

Is client authorized for message?

Is client authorized for result

Get internal socket references

+get Modul eAddr ess(in nodul e: Mdul €): Address const

+get Remot eMbdul eAddr ess(in address: | net Address, i n cl assname: String): Address const

+get Mbdul e(in nodul eName: String): Mbdul e const

+i sMbdul eLoaded(i n nodul eNare: String): bool ean const

+i sCor eMbdul e(in cl assnane: String): bool ean const

+get AuthorisedQient(in clients:InetAddress[],in instr:instruction): Cbject const

+get Aut hori sedLi st (in clients:InetAddress[],in instr:Instruction): InetAddress[] const

+i sAut hori sed(in client:lnetAddress,in instr:instruction): bool ean const

+i sAut hori sed(in client: 1 net Address,in msg: Message): bool ean const

+i sAuthori sed(in client:lnetAddress,in rst:Result): bool ean const

+get O i ent Descr i pt or sFromAddr esses(in clients: I net Address[]): Vector const

Reference to parent API

+get APl (): APl const

Get parent API

in neg: Message): voi d
Send a message

To(in address: | net Addr ess) :
Connect to remote WebCom

Connect to remote WebCom
Queue a WebCom instruction
Load a new Module

Unload a module

+ ogVr ni ng(in s:String): void

Log a warning message

+ ogSevere(in s:String): void

Log a severe message

+log(in s:String): void

Log a message

+ ogException(in e: Exception): void
Log an Exception message

+ ogFat al Exception(in e: Exception):
Log a fatal exception

+ ogFine(in s:String): void

Log a fine grained message

To(in address: | net Address, i n portNumint):

+queuel nstruction(in instr:instruction):

+1 oadbdul e(i n cl assnane: String): Mdul e

+unl oadMbdul e(i n cl assname: String, in force: bool ean):

bool ean

bool ean

Figure 27: UML Diagram Module API.

61

4.1 Module API

The API class, illustrated in Figure 27, serves as a placeholdereaete for the WebCom machine, and
provides access to resources and operations on that machieAPI class may be used, instead of the
EventAPIManager, to register and deregister for Event API events, and isgistyomore convenient.

Modules may avail of a persistent memory store, which esst®ng as thaPI does, persisting across
module loads and unloads, but not currently across WebCetarines. Modules may requésip storage
objects, or registafaps of currently referenced objects. TRRI maintains a handle dfap objects indepen-
dently of the module, and they may be reclaimed by modulésvidig a reload, if desired.

The APT also includes a static method for constructing new WebCatairces. Third party applications
wishing to use WebCom as an implementation architectune,use this method to start and maintain a
reference on a WebCom instance. Messages can be sent toeh{div to perform application work.

The API class contains references to hmformationAPI and anActionAPI object, respectively, the
query and operation interfaces for the represented WebCachime. The query interface provides access to
machine data, whereas the operation interface providdsaagto &ect changes in machine state.

The InformationAPI provides a number of query methods, providing security @ightion, mod-
ule addressing, module referencing, and some minor coafigar details. It is intended to expand the
InformationAPI as necessary to support desired query requests from thitgl ipadules. As such, this
is an early specification, likely to evolve to meet develoguirements. Th@&nformationAPTI methods
are implemented via direct calls to existing core moduleaai@ns and module writers are advised to use the
InformationAPI rather than internal methods, for robustness. Internaffiates are subject to change and
the indirection level provided by tHenformationAPI is useful.

The ActionAPI provides operation methods, dealing with WebCom connestimodule loading, and
logging messages. Send messages is also done viacthi®nAPI, as previously noted. As with the
InformationAPI, theActionAPI is intended to evolve to meet module writer requirements.

Together, th&nformationAPI and theActionAPI classes should provide all the facilities and informa-
tion required by module writers. Their ability to meet thizagwill be improved based on user feedback and
feature requests. At present, many of the core modules denmpipy theInformationAPI andActionAPI
classes and it is hoped to improve these these legacy imptatiens during their next refactorirfg.

§42 Module Loading Mechanism. <Details on the module loading process

The Module API includes a new system for loading and unlogudiodules, extending the older system to
support callbacks during loading and to support moduleadity. There are also extensions to the module
configuration files to support automatic loading of thirdtpar user modules.

The module lifecycle begins at loading. Modules may be Idaaletomatically when the WebCom is
created, or loaded explicitly via use of thetionAPI.loadModule call. To be loaded automatically, a
module must be listed in the WebCamodules . properties file. This file contains lines listing the required
core modules, those which must be present for the WebComntoand an optional listing of third party
modules to load at runtime. Either load mechanism has the sasult in the case of user modules.

62

4.1 Module API

Core modules are loaded in a slighthyffdrently from user modules, mostly for legacy compatibility
reasons. The only noticeabldf@irence is that a set of core modules must be acquired andbattweany
third party modules are given an opportunity to load. Thellpeocedure is pretty much the same for core
and user modules, with some additional configuration andesdthg matters in the case of core modules.
Only third party module loading will be considered below.

To load a module, the named class is instantiated via a rie#eCtass. forName call. Any failures
are logged and successfully returr@gject references are cast imdule. The API reference field of this
Module is then set to the current WebCaypI and the moduléoad method invoked to complete the loading.

Note that WebConAPI objects are not available to module constructors. Heneeptbdule writer is
given a chance to perform initialisation dependent @a®hreference in thdoad method. Within thisload
method, it can be presumed that the API reference is set anldecacquired via thgetAPI method.

Initialisation not requiring the API should be done from liiit the constructor. This includes regular
application configuration, and WebCom specific actions dédgisteringEventAPIListeners. API specific
module initialisation needs to be done from within flkad module method. The initialisation, API assigna-
tion andload method invocation order is the specification and is guaeshte

Modules are unloaded by explicit calls to thetionAPI.unload methods or at machine termination,
and involve anunload method call on the module targeted. Unload operations #neresoft, meaning a
module programmer can can explicitly refuse to comply, adhmeaning the module programmer’s prefer-
ence is ignored. Module compliance is indicated indh&oad method return value.

§43 Note on Module Addressing. <Remarks regarding current module addressing limitations

Currently module addressing is based on module classnapesfi§ modules can be requested from the
InformationAPI indexed by desired classname. Module names are uniquey tleissnames, but there is
a concern that multiple modules of the same core module typela required. Core modules are not class-
name addressed for legacy reasons, instead being direfghgnced by module type, e.g., SchedulerModule.

A problem arises if, say, two flerent connection managers are desired. This is not possiblently
for addressing reasons. It is intended to tackle this probi& the use of composite modules when and if
the circumstance arises. A composite module is a wrappeuladacilitating multiple child modules of an
identical type to be loaded. Composite modules would alsdlesaddressing for these child module, perhaps
by separate message headers inissage type?

Message routing addressing is similarly done depending®nlass of théessage object received. The
classname of thBessage type associated with a particular module must that of theuteodith “Message”
appended. S@&lahModule would have to be associated with message @asalModuleMessage for the
inbuilt APl messaging to deliver messages.

Specific message classes are desirable because they fodcdemwiters to explicitly detail permitted
message types. This enforced message specification id deefumentation. Of course, strictness is usu-
ally circumvented slightly by including a catch all messagge USER MESSAGE to facilitate later module
extension and message augmentatifn.

63

4.2 Example Modules Employing the Module API Architecture

4.2 Example Modules Employing the Module API Architecture

4.2.1 Statistics Module

The statistics module was the first module to exploit the Ed? architecture, and was written mostly to
demonstrate Module API structures. In this respect, althostrictly unnecessary, it utilises aspect based
events, messages and the heavyweight module messages. otluensode itself being fundamentally
straightforward, is nevertheless overcomplicated by #raahstrative nature.

The statistics module began as instrumentation code inrtpmal WebCom implementation, increment-
ing counters at specific points in the WebCom code. Althotigis, code was later removed, it formed an
ideal application for the aspect based Event API and wagroginced in a module form.

The statistics modules collects statistics generated iinbennal WebCom actions. These statistics are not
especially interesting in themselves, including itemshsa the number of generated and executed instruc-
tions, the number of messages sent and received, and so forth

While the statistic module’s main use is as an example for heoduiters, it does also have real use
within the WebCom applications. When loaded and enabledmibeule collects statistics for provision to
other modules, and for the IDE tool upon completion of grayxgrations.

§44 Module Operation. <Run through of Statistic Module operatien

The statistics module extends the statistics frameworlippasrt the exchange of statistical data with remote
WebComs. Suppose client wants to acquire statistical nméition from a Statistics Module on a remote
WebCom, for which it somehow has address. The client calls therequestRemoteStats on the local
StatsModule and busy pollgetStats for a returned result. Instead of busy polling, the clienynmstead

be informed of result notifications by use of Module API heagight events. The client would need to
implement theStatsEventListener interface and register with ti&tatsModule, in this case.

TherequestRemoteStats method sends &tatsMessage .REQUEST message to the remote WebCom
StatsModule. This module acquires the locatats object, which maintains the current statistics for that
machine, and extracts a Memento of the statélhis memento is returned, in $tatsMessage.REPLY
message, to the original WebCom where a Se@wts object is constructed from the memento details. This
Stats object is incomplete, not having a handle to the rigfiI, but sutices nevertheless.

The StatsMessage.CLEAR message can be used to reset the cumulative statistics oantizge Web-
Com. AStatsMessage.CLEAR is acknowledged by &tatsMessage.REPLY even though the memento
indicates zero state. This saves on a sep&izt&R_ACK message to update the local WebCom state.

Note the statistics module is almost completely blind to G/ internals, knowing only how to ex-
change WebCom messages. The statistics collection is cimg tlne Event APStatsEventAPIListener
class which is more or less ignorant of the WebCom internals.

Although clunky, this draft module is useful in illustragithe three major communication tools available
to module writers, namely the message system, the everinsyanhd aspect pointcut hooks.

64

4.2 Example Modules Employing the Module API Architecture

/\ /\ AN
StatsMessage StatsModule StatsModulelnfo
Message class for statistic messages Statistics generation module Module information for StatsModule
[+REQUEST: int -listeners: StatsEventAPl Listener
Type sentinal Heavyweight eventlisteners
[+REPLY: int -stats: Map
Type Sentinal (Address, Stats) pairings.

+CLEAR int

n +Stat shodul e()
Type Sentinal Constructor. Registers events
+USER EXTENSI ON: int #assi gnedAPl (i n api:APl): void
Type sentinal Start statistics generation for api
+load(in api:APl): void

Load module

+processhessage(in m Message): void
Handle StatsMessages

+request Renot eSt at s(in address: Address): void
Request stats from remote machine

Stats +request O ear Renot eSt at s(i n address: Address): void
Statistics storage class Clear remote statistics
+get Stats(in address: Address): Stats const

Get statistics for given address if available

RGEvent
StatsEventAPIListener /\
Listener interface for WebCom Event API
StatsEvent
Event object for heavyweight module events
-address: Address
Event source
+statistics: Stats
Statistical information for event
<<Interface>> +StatsEvent (i n nodul e: Mbdul e, i n addr ess: Addr ess, in statistics: Stats)
StatsEventListener | Constructor Event Li st ener
EventListener for heavyweight module events +get Address(): Address const
Get event source
+handl eStat i stics(in event: StatsEvent): void
Handle statistics event +get Statistics(): Stats const
Get event statistic:

Figure 28: UML Diagram Statistics Module Part I.

§45 Implementation. <Outline implementation of the statistics module

Figures 28 and 29 illustrate ti#ratsModule software. Most of the module framework constructions are
detailed in Figure 28. There is an uninterestiwgluleInfo class for theStatsModule, and a standard
Message subclass indicating the supported message types as séendartier walkthrough:

e StatsMessage.REQUEST to request a remote machine forward statistics.

e StatsMessage.REPLY to return previously requested machine statistics, or exgjatively load re-
mote caches with current statistical information. Alsovesran acknowledgment role in the protocol.

e StatsMessage.CLEAR to request a remote machine reset its statistical infoomati

The StatsEventListener interface andStatsEvent class comprise a basic heavyweight module event
setup.StatsEvent notifies interested parties that new statistical infororatias been received from a remote
WebCom. So, clients can registerstsatsEventListeners and not bother to busy poll thetStats call.

The other detailed class in Figure 28SsatsModule, a pretty basic module even though it does ex-
ploit the three available communication techniques. Usitates the convenience of the Module API that
a fully featured module may be implemented with such littele. StatsModule simply registers the

65

4.2 Example Modules Employing the Module API Architecture

Stats
Statistics storage class

- NUM MESSAGES RECEI VED. String

- NUM NESSAGES SENT: String
-~ NUM | NSTRUCTI ONS GENERATED: String

=NUM | NSTRUCTI ONS_EXECUTED: String

- NUM | NSTRUCTI ONS RECEI VED: String

=NUM | NSTRUCTI ONS_TRANSM TTED. String
-NUM RESULTS RECEI VED. String

-NUM RESULTS SENT: String

- NUM REDI RECTI ONS:_String
Map sentinals

- numessagesRecei ved: int
-nunMessagesSent : i nt

-nunt nstructi onsGener at ed: i nt
-nun nstruct i onsExecut ed: i nt
-nunt nstruct i onsRecei ved: i nt
-nunt nstructionsTransnitted: int
-nunResul t sRecei ved: int
-nunResul tsSent : i nt

-nunRedi rections: int

Statistic counters

-statsMap: Map

Map between APIs and their statistics stores.
-api: API

The API this object manages statistics for

StatsEventAPIListener
Listener interface for WebCom Event API

+Stats(in api:APl)
Constructor

+get APl (): APl const

Get API for these statistics

+newl nstructi onl nEngi neMbdul e(in api: APl in instr:Instruction): void
Increment Stats Count

+newl nst ruct i onl nVebCon(in api: APl in instr:Instruction): void
Increment Stats Count

+i nstructionExecuti onl nEngi neMbdul e(in api: AP, in instr:instruction): void
Increment Stats Count

+i nstructionRecei ved(in api:APl,in instr:instruction): void
Increment Stats Count

+instructionTransmitted(in api:APl,in instr:instruction,in desc:Descriptor): void

+getStats(in api:API): Stats const Increment Stats Count

Get Stats for given API +resul t Recei ved(in api:APl,in rst:Result): void

+get Mement o(): Seri al i zabl e const Increment Stats Count

Memento access method +backpl aneSent Message(in api: APl ,in msg: Message): void

+set Menent o(i n nenent o: Seri al i zabl e): voi d Increment Stats Count

Set state via Memento +engi neResul t Sent (in api:APl,in rst:Result): void

+reset(): void Increment Stats Count

Reset statistics +conmanRedi rect To(i n api: APl in source: Address,in target:|netAddress): void
+get NumMessagesRecei ved(): int const Increment Stats Count

Get counter contents

+ ner ement NumvessagesRecei ved(): voi d
Increment counter

+get NunMessagesSent () int const

+i ner ement NumvessagesSent () : voi d

+get Nuni nstructi onsGenerated(): int const
+ ncr ement Nunt nst ruct i onsGener at ed(): voi d
+get Nuni nstruct i onsExecut ed(): int const
+ ncr ement Nunt nst ruct i onsExecut ed() : voi d
+get NunResul t sRecei ved(): int const

+i ner ement NunResul t sRecei ved(): voi d

+get Nuni nstructi onsRecei ved(): int const

+i ner ement Nurt nst ruct i onsRecei ved(): voi d
+get Nuni nstructionsTransmitted(): int const
+i ncrenment Num nstructi onsTransni tted(): void
+get NunResul tsSent (): int const

+ ner ement NunResul tsSent () voi d

+get NunRedi rections(): int const

+i ner ement NunRedi recti ons(): voi d

Figure 29: UML Diagram Statistics Module Part II.

StatsEventAPIListener and heavyweight events before just waiting for messagegit@a These mes-
sages are processed according to the sketch protocolenitiibove. All thats all, save for some sleight of
hand regarding the incorporation of n&RI objects into the statistics scheme upon discovery.

Figure 29 details the software elements which perform tlé setistics generation work. Tigats
class is the main data store for statistical informationyjfuling anAPI to Stats hashtable mapping, enabling
the multi-API part of the problem to be compartmentalised. Thets class also details statistics, counter
increments, queries, resets and summary generations fodiaidual API. TheStats class also partakes in
the Memento pattern externalising its state in an objee s&fnner.

The individual statistics in th6tats class are updated 8tatsEventAPIListener, an Event API
subclass. This class responds to the internal WebCom esentssponding to events of statistical interest,

66

4.2 Example Modules Employing the Module API Architecture

and forwards increments to the relevantts object. So, when an event occurs in a particARE, thisAPT
is used to acquire the correktats object which is appropriately updated.

This module is perhaps the most complicated example here.n&kt examples are all of a trivial pro-
gramming nature, yet achieve valuable software functiomsiateresting interface support. This ease and
power of application confirms a key role for the Module APIhiit future WebCom design.

§46 Future Extensions. <Further directions forStatsModule development

There are many interesting directions in which the stagstodule might be extended, the most immediate
being expanding the range of statistics generated. Iniaddthe module would benefit from the inclusion of
methods to perform basic statistical analyses. This migftlve retaining a long run memory of statistical
values, and using this history to estimate quantities, ssahean queue length, mean time to instruction, etc.
This information would be of use in the scheduler and loadrzr modules.

The limited interface to remote WebComs is a second glanmigsion in the current statistics module. It
would be advantageous to reduce message acknowledgmé&agpagizes when not required, and to imple-
ment more finegrained reset and query operations on remdi€bves. These changes could be coupled with
a more fully featured module interface providing stattionformation on neighbourhoods in the WebCom
connection tree. This would be of benefit to fault tolerarme laad balancing decisions.

In respects, the statistics module is a primitive Inform@atManager Module, an in-progress plan to
produce systems to manage and organise all kinds of WebCdamraehine data. The statistics module
scratches the surface of one Information Manager featheg,df local statistics acquisition, and forms an
Information Manager Module prototype case study, dematisty the ease of statistics collection.

4.2.2 SysTray, IDE Bridge and Other GUI Modules

The idea of graphical modules is another interesting modeNelopment. These modules contain or present
graphical elements for user interaction. The idea of amacteve module is the simple, but key development,
since to date, modules have been user independent, regoinmmal configuration.

The IDE is the firstimmediate graphical component in consitien of graphical element modularisation,
and there are streamlining advantages in implementindikeals a module. In the first place, it removes the
current division between IDE GUI frontend and WebCom badkéfhilst, this division might be desirable,
it is very much a traditional WebCom application operatioa,, where WebCom is invoked separately to
achieve some computation for the container applicatioris iéed not be the only interaction model.

Implementing the IDE in module form and attaching direathatWebCom instance backplane might have
benefits, including access to WebCom information via the Med\P!I, rather than by message passifg.
Additional modules may then independently extend the IDRgithe Module API.

Moreover, the work in modularising the IDE is not significaatthough there are careful choices to
be weighted. There has been keen support for maintainimgiatane IDE operation, and for ensuring a

67

4.2 Example Modules Employing the Module API Architecture

decoupling of the IDE from any particular running WebComamge is always possible. Methods addressing
these concerns will be seen shortly.

§47 IDE Module and Bridge. <Particulars regarding the IDE Module implementation

The use in an IDE module recasting is that rather than havWiadRE start WebCom, it might be done the
other way. WebCom could start an IDE. An advantage here istiieal DE could be started identically to
WebCom save with a fferent configuration file. Also, other modules would be abler&ate an IDE for the
user. So, for instance, a safety module tracking a graptuérecmight create an IDE on encountering type
or security errors. The user could then edit the graph antres it via the newly loaded IDE.

A particular problem with the current IDE is determining ked computations, and access to the Event
API might help in establishing computation liveness. Pnégehere is little indication of WebCom progress
when the IDE runs a graph. With the Event API, there is scogeduide visual cue updates on core events,
making it possible for users to determine if a machine isefair just engaged in a long computation stream.

If a WebCom instance were always available during IDE opanag graph could be started by simply
sending &fOP_LEVEL message to thBackplane via anActionAPI.sendMessage method invocation.

Implementing the IDE as a module does'iatvolve much &ort and initially would not &er any module
functionality. So, in particular, messages would be igdofEhemain method of the IDE would be retained
for launching the IDE, but would instead make a WebCom and tba IDE onto it as a modufé.

Binding the IDE to the module architecture caused initiala@rn. However, implementation in module
form does not preclude separate operation outside the WelaGotext, and especially so in applications, like
the IDE, which have low coupling with the WebCom core ardttitee. Implementing the module interface
just means other loaded WebCom components can make use of it.

Writing code conforming to the Module API, does not nece$saind that code to the WebCom core.
In the IDE module case, there is fundamentally no couplingveen the IDE and WebCom, other than
preexisting work execution calls. The WebCom core is stidware of the IDE aside from a result call
direction. This is no dterent to the current configuration.

Given the reservations regarding tight module coupling, IIDE module was implemented as a loose
bridge module instead of directly. Essentially, this imea leaving the existing IDE code in a standalone
executable state, and implementing a wrapper module t&kétiee IDE when loaded and destroy it when
unloaded. This achieves the functionality of a direct IDEdmle, but at arms length, and while not optimal,
is suficient for developing and arranging GUI module coordinatioan integrated tool.

§48 SysTray. <Using modules to implement a WebCom desktop system as aclufeeleration of collaborating applications

With this rework, it is possible to run WebCom as a desktopiserand to dynamically load and unload
modules via a system tray tool. This dynamic load featurdlesaa range of interesting user to WebCom
interactions. For instance, say a graph execution goes #vety the user might dynamically load a debugger
or replayer module onto the running WebCom and debug thengnegitu.

68

4.2 Example Modules Employing the Module API Architecture

Implementing the IDE using the Module interface directly,vaa a helper module, means it could be
easily loaded by this tray application. This WebCom SysTiaot need be little more than a WebCom
instance wrapped with a GUI runtime module loader. In fémt,mhodule loader and unloader features are not
actually essential, since they may themselves be impleadenta module, albeit one which must be loaded
at startup if the user wishes to change loaded module coafigus.

The sum total of basic SysTray tool requirements in thisgfes to wrap a WebCom in generic GUI
code for creating a SysTray icon and responding to menuscli€kis may not be extremely functional, but
achieves the target of putting WebCom on the user desktop.

Clearly, additional features are required to make this & application of any use. So, the SysTray
requires a extension mechanism, but the Module API is atdaitaechanism already available within Web-
Com. Desired SysTray features may be implemented as WebGumtuales and either loaded by the bootstrap
configuration, which launches the SysTray-WebCom comhainabr by the user as required.

In this way, lots of desirable design and programming achged are leveraged directly from the Module
API design right into the SysTray application. SysTray auatically benefits from component uniformity,
high degrees of flexibility, short widget development timehustness to WebCom modification and good
isolated design. The tray application leverages the emto@ule architecture for ease of extensibility, and in
fact, once implemented, the core SysTray icon code needen@donsidered ever. Being so straightforward,
it highly possible to implement it robustly and correctletfirst time.

The problem of dynamically loading and unloading moduleslves little more than an interface to
loader methods in thectionAPI andInformationAPI classes, to which all modules have access. So, any
module may be used to implement this dynamic loading andadiihg of modules, and in the SysTray case,
it is convenient to implement this loader as a GUI module tilifate user interaction.

Further, users could use the SysTray to directly load IDEaimses, since just loading the IDE module
bridge in the dynamic loader will kick start an IDE instan@éis pattern generalises though, which makes it
exciting. Log viewer modules, trace replayer modules,rimi@tion and statistics viewer modules, debugger
modules, etc. may all be implemented in this manner. Monedezause they are written to the Module API
interface, the modules require very little knowledge of Bgy internals.

A version of the SysTray application has been implementedraing to this design, written using the
SWT widget toolkit, and so should be available on any platfevith an SWT implementation, including
most popular desktop systed¥sThis current SysTray application includes graphical load anload, IDE
bridge, parent connection dialogue, and log viewer moduldsese already provide quite a fully featured
WebCom desktop environment, but would benefit from more rfeiiplementations, such as a debugger,
fully featured statistics viewer, etc.

69

4.2 Example Modules Employing the Module API Architecture

4.2.3 BeanShell

BeanShell is a Java scripting tool, providing a commandtierface programmable with Java syntax. Bean-
Shell, like Jython, is a popular Java style scripting framevwhich may be embedded within user applica-
tions, providing developers with scripting access to disj@dthin a running application.

WebCom already incorporates the BeanShell tool as supmoceftain scripting library nodes. Security
notwithstanding, the use of BeanShell within WebCom cowddobneficial. Developers could employ its
versatile syntax to debugging task, or use it to extend Web@omeet unforeseen and otherwisidult to
fix problems. Scripting could be used to “glue” existing WelCsoftware into more powerful tools.

But, debugging is the use of most primary interest, esdgaithin the Module API context. A basic
BeanShell bridge module provides some nice user interagissibilities. Suppose a WebCom execution
freezes, then a developer might load a BeanShellModule amtotherwise frozen WebCom and use this
interface to examine WebCom state, perhaps via availatflermationAPI objects.

In addition, the BeanShell tool also comes with a graphieasion. The implemented module bridge
leverages this graphical BeanShell prompt into a WebComutegdvailable for use within all WebCom
tools. Most especially, this BeanShell is available for wgin the SysTray application, so forming another
quick SysTray extension tool, and emphasising the smalldaanisation of SysTray. SysTray users can
load theBeanShelllModule, via a convenience menu link, and examine internals of thaing WebCom.
So, with little expenditure offéort, the WebCom desktop tool already has an available cersol.

BeanShell may promote a more serious WebCom scripting reygtee basics of which are already in
place, being the Module API and BeanShell support. The piawviof a medium sized library of useful
WebCom BeanShell scripts might be helpful to developersptccould be bundled to dump WebCom state,
clear instruction queues, launch graphs, etc. and woulgment the BeanShell application significantly.

Finally, note that the BeanShell interface may also be usettely, and could facilitate a remote Web-
Com debugging shell. However, there are serious secunitgeros to address first.

4.2.4 Future Directions

Before leaving the topic of the Module API, it is instructiteeconsider some future work and applications in
the area of module design. Only some brief sketch detailsmisproposals will be mentioned here.

§49 Core WebCom Modules. <Use of the Module API within the WebCom core architecture

The first concern is a matter of WebCom internals. Within treo@®bm core design, there is much functional-
ity which might be componentised using the Module API. Adiden the previously discussed core modules,
there are other classes working to achieve particular paegpavithin the WebCom machine. Isolating and
factoring these roles would add additional configurabiiitya. more decoupled internal architecture.

For example, within the WebCom core are classes dedicatiedititating the exchange dflass items

between peer WebCom machines. This is arranged in a sdimeet-architecture and intended to support
cases where one WebCom sends another WebCom work which @@Eakh cannot complete. A common

70

4.2 Example Modules Employing the Module API Architecture

failure in completing work is an absence of critical clasBesm the peer WebCom. To this end, the class
server and client structure was designed to delilerss descriptions to WebCom JVMs requiring them.

This functionality could be easily factored as a separateéutey and would allow site administrators fine-
grained levels of configuration options in deciding whetiogpermit such class sharing. Further, factorising
such reflection dependent code helps in the task of portingG&m to embedded architectures, which may
not possess these reflection capabilities. In this caseefleetion dependent code can just be dropped.

The class loader is not the only example of modularisable egthin the WebCom code. Others include,
maintaining logging support, and usiligrkReceiverModules asad hocconnection managers.

§50 API Module. <Sketch of API exchange modsile

Without considering security, it is interesting to considcilitating APT object calls on remote WebCom
objects. For instance, a local WebCom might maintain a eefes to &RemoteAPI object, subclassed from
API, where methods are implemented to involve transferringests to a remote WebCom before execution.

The implementation of this scheme might involving backihg RemoteAPI class with the use of an
APIModule, and using the message passing system to exchange cals.dBtaiurally, the method call and
parameters would have to be marshelled properly withiaARIModuleMessage class, and concern would
have to be directed toward handling instances of missing ieferences®

Missing local references in the parameters is less of a groldn the calling side, as certain strict but
manageable restrictions would avoid this problem arisirige issue of missing references is a bigger problem
for returned results. For the most patBI query calls return primitives, but some instances requiezis
measures, such as with local socket referencing. Theseunesamay involve separating theI interfaces
into remote-safe and local-safe categories.

It is worth noting the implementation strategy employedhis tdesign, since it forms a very common
module application pattern. Some available software dbijechis case th@emoteAPI, is implemented to
delegate its methods to a backing module. This backing neatiein performs necessary operations, perhaps
involving the Module API, to achieve certain goals and resswhich are relayed to the original method.

§51 API Extension Support. <Augmentation of module interfaces

It is essential at some future point for the API classes teigemextension points, in order that user modules
may extend the API with new functionality. This models théifise scenario where modules or plugins have
exposed extension points and it is necessary to emulateithie the WebCom API design also.

Consider the case of the statistics module, where it mighskéul to expose the operations for requesting
remote statistics, for instance. However, there is présaotway for the statistics module to advertise this
functionality to other modules. Currently, the best that ba done is for modules to request a list of loaded
modules from thé&nformationAPI and to individually examine the class interface of eachiin.t@his does
not indicate any especially helpful metadata to the querglasses, however, and really ought to be replaced
by a superior scheme.

71

Chapter Notes

In fact, a COM-style interface support might be a step in tetirection, provided this interface clearly
exposes and documentfered module methods. Similarly, this interface should ai$er the particular
extension points within the module to outside parties. Ttamsxtend the core API or the API of a particular
module, the developer implements a certain interface apliesdt at the exposed extension point.

Chapter Notes

1in particular objects comprising the Backplane were sugtabrepresent a single WebCom instance.

2This addressing, introduced as a workaround, is suboptifmlever, there hasn’t been pressing need yet for an update.

3This could also be called a modular architecture, but witheb@om the module terminology already has specific meaning.dienc
the term plugin is used to discuss WebCom components eveesié tbomponents are likely to be actual WebCom modules.

4Although the modules are called noncore, this does not mearuthetions provided are not core, in some sense. The term core
refers to the very basic code, necessary for WebCom to axgigph reductions and peer collaboration.

5A developingModuleInfo specification deals with module dependencies. The curreifitidcludes dependency notations, but not
automatic dependency resolution, or dependency cycle avogstructures.

61f the module already contains thefBu Module, this can be excised before consideration in this namingrseheSo, the
ModuleInfo for SecurityModule can be found irsecurityModuleInfo instead ofSecurityModuleModuleInfo.

"This restriction is easily remedied, if so necessary.

8This update must consider which core module methods are usegkernent the methods in tHaformationAPI andActionAPI
classes, of course. But otherwise, core modules should emlbglasses to the fullest extent.

°If a composite module is ever written then it will likely dictathe addressing specification in cases of multiple core medule

101t used to be the case that some of the modules sent I¥aisage objects as messages. This was refactored because it obscured
the content of the messages. The additional tagging is alpfuhs debugging.

1lYes. The design could just makeats serialisable, but the Memento pattern is sharper OO, maintagncapsulation.

12The IDE talks to a child WebCom instance by forwarding a workssagje to it, and registering for an result notification. The
WebCom is otherwise an entirely separate entity from the IDE

13pid not, rather. A module version of the IDE was prepared as#opype before the final bridge module architecture was eekid
on. The programmingftort involved in producing this prototype was minimal.

4Actually it would have to load a new IDE onto the WebCom, bunggthis first causes no harm.

151t isn't possible to have a completely portable system trayliaation in Java. The “Write Once, Run Anywhere” Java mottdsen
upon contact with the modern graphical user interface. Ak, ghe SysTray tool is only fully supported on the Windowstfoliam.

16 first approach requiresPT methods parameters to be serialisable. Although, this warkse refined solutions are possible.

72

Logic Programming in WebCom

n addition to incorporating Aspect Oriented Programmiriptéques, producing type checking capabil-
ities in WebCom also involves introducing elements of thgitd’rogramming paradigm into WebCom.
There is a convenient representation of the type checkimgitive actions in terms of logic expres-
sion resolution. For this reason, and because it has padefiplications in other WebCom development, a
resolution engine was incorporated into the WebCom code. bas
This chapter examines this resolution engine and its imeigation, including the formulation of basic
type checking operations in first order predicate logic.sThgic engine forms the final component needed
to implement type checking support within WebCom, the tapithe following and final chapter.
Implementing a logic engine from scratch is not excessigghcult, being almost entirely an engineering
task. And, while existing Prolog engines could easily hagerbincorporated, a new resolution engine im-
plementation provided opportunities to finesse the sothaatifact design and to simplify its adoption within
third party WebCom applications. That is, a template stmectould be designed supporting straightforward
access to logical data and operations thereon from witlirid ffarty modules, or elsewhere within WebCom.
This logic programming harness primarily facilitates loatyipe checker validation calculations. How-
ever, with general application the resolver supports tleenth of extending current WebCom programming
methodologies. It complements available OO and AOP witlsibdgies for logic programming design.
There is also no reason why resolver facilities need not béadle to graph designers, via logic com-
putation nodes. Although, outside the scope of the work,hieigpossible to conceive of a set of WebCom

73

5.1 Resolver

operations enabling a graph designer to describe, parseaolde graph level logic programs.
In any case, logic programming features are a valuableiaddi the WebCom software, as will be seen
in the implementation work for the type checker modules @rbxt chapter.

5.1 Resolver

The resolver engine is key in implementing logic progranmgmivithin WebCom, and involves producing
software objects to represent logic data elements, andpteiment unification and resolution algorithms.

§52 Resolver Components. <Description of the portions of the Resolver architectured ¢he approach to implementation
There is particular concern in the correct logic data eldmdesign, i.e., the representation of logical structures
like atoms, literals, clauses, and functions. Developkaikl be presented with terms appropriate to their
application. For instance, in the type checker design,ritdse convenient to deal with elements like types,
conjunctions of types, disjunctions of types, as well as latyge inclusion relation. The developer will
recognise helpfully named dual software elements suctubsype rather than unqualified mathematical
terms like literal, clause, etc. This allows developersgiaore logic programming somewhat and instead
represent relations between real artifdcts.

Aside from logic element representation, there are the t@yoatgorithms required, unification and res-
olution. The implementation of these algorithms withinemdible frameworks, particularly in the case of
resolution, is helpful for later extension. These custeiigs do not typically concern logic programming
endusers, unless they wish to apply extra domain knowleglgegdrove unification and resolutiotfieiency.

5.1.1 Logic Elements

Describing the logic engine must begin with basic objectesentation, a UML sketch of which is shown in
Figure 30. These elements will be discussed in turn belowevi@dge of First Order Predicate Logic(FOPL)
is helpful, but is not the real point here, so rather thanwdisdnterpretations too much, the logic elements
will be presented operationally. Just presume the set ofsitepon which the logic will work. What these
elements are does not mattgust that they are given.

§53 Basic Logic Representation. <The classes describing the logic elements required for FBiilementation
It is easiest to begin with théonstant class which represents logical constants in the FOPL systbese
are the nouns of the modeled system, and are little more dleentified items, a fact mirrored in the essentially
blank programming implementations thereof, consistin@ afonstructor and a visitor callback only. An
example constant might be a specific type in the type cheglstems, for instance.

Logic constants are special cases of logic functions. Atfands an identifier with a set number of
subterms, which maps these subterms to a specific item indlelsd system. Constants are functions with
no subterms, so always mapping to the same item in the moslgdteim, i.e., constants are nullary functions.

74

5.1 Resolver

Literal
Representation for logic literals

-name: String
Literal symbol

-positive: bool ean

Flag indicating literal sign
~terms: Tern{]

Function places

#Literal (in name:String,in positive:boolean,in nunferms:int)

#Literal (in name:String,in postive: bool ean)

#Literal (in nane:String,in positive:bool ean,in term Term
#Literal (in name:String,in positive:boolean,in terni:Termin terng: Tern)

Constructors

+get Name(): String const

+i sPosi tive(): bool ean const

#set Posi tive(): void

#set Negat i ve(): void

+i sNegati ve(): bool ean const

+get Nunerms(): int const

+getTern(in izint): Term const
#setTern(in izint,in termTerm: void
Subclass access to change terms
+negate(): void

Get negative version of literal

+visit(in visitor:Visitor): void
Visit double dispatch call hook
+create(in pos:bool ean,in terms: Tern{]): Literal
Hook for further subclass typing

Term
Abtract base class for term logic items

+visit(in visitor:Visitor): void
Visit double dispatch call hook

A

f—————————<>} negative: List

Clause
Representation for logic clauses
~comparator: Conparator
Logic expression comparator

-literals: List
Full list of literals in clause

- posi tive: List
The positive literals in the clause

The negative literals in the clause

+Clause(in literal:Literal)
+C ause(in literals:Collection)
Constructors

+i sHornd ause(): bool ean const
+get NunLiteral s(): int const
+getLiterals(): List const

Get all literals

+get Posi tiveLiteral s(): List const
+get Negat i velLiteral s(): List const
+visit(in visitor:Visitor): void
Visit double dispatch call hook

<<Interface>>
Visitor
Visitor Pattern for logic elements

+visitConstant (in constant: Constant): void
+visitVariabl e(in variable: Variable): void
+vi si t Function(in function: Function): void
+visitLiteral (in literal:Literal): void
+visitdause(in clause: O ause): void

A

Function
Function symbol representation

Variable representation

Variable

name: String
-terms: Ternf]
Function places

#Function(in name:String,in arity:int)
#Function(in name: String)
#Function(in name: String,in term Tern)

Constructors

+get Name(): String const

+get Arity(): int const

+get Tern(in izint): Term const
#setTern(in izint,in termTerm: void
Subclass access to change terms
+visit(in visitor:Visitor): void
Visit double dispatch call hook
+create(in terms: Tern{]): Function
Hook for further subclass typing

#Function(in name:String,in terml:Termin terng: Tern)

7

Constant
Nullary Function

+Constant (in name: String)
Constructor

+visit(in visitor:Visitor): void
Visit double dispatch call hook

-identifier:

Unique identifer for variable

String

+Vari abl e()

Constructor

+Vari abl e(in identifier:String)

+get I dentifier(): String const
+visit(in visitor:Visitor): void
Visit double dispatch call hook

VisitorAdaptor

-map: Map
Tree walker work space

+getQutput (in termTerm: Cbject const
#setQutput (in term Termin object: Cbject): void
+getQutput(in literal:Literal): Cbject const
#setQutput(in literal:Literal, in object:Cbject): void
+get Qutput (in clause: 0 ause): Cbject const
#setQutput (in clause: O ause, in object: Cbject): void
Accessors and mutators for internal map
+visitConstant (in constant: Constant): void
+visitvariable(in variable: Variable): void
+visitFunction(in function: Function): void
+visitliteral (in literal:Literal): void
+visitQause(in clause: O ause): void

Blank implementation DFS walk

Figure 30: UML Diagram Logic Datastructures.

75

5.1 Resolver

An example type system functions might be a function to comlypes into aggregate union types, or to
represent all but a specific argument type.

Functions are represented by thewction class, and consist of a function name identifier, togeth#r wi
a list of subterms underneath the function symbol. Fhection class includes operations to manipulate
these subterms, to implement double dispatch callbackicfadtilitate more specific typing in subclasses.

Subterm items, the elements that functions operate onystregriables and other functions. A logic vari-
able can take the place of any definite logic term expresaidithin the software, variables are represented
by theVariable class, and are simple placeholders with identifier names.

Term objects themselves are not realised directly withinsystem, only variables or concrete functions
are actually used. However, the term entity has placehdidastions, represented by tiTferm software
counterpart, a blank abstract base class with just viséliack specification.

TheTerm composite tree forms the fundamental logic element. Theénaining logic elements, literals
and clauses, are compositions Tfrms andLiterals respectively. Thé&iteral class represents logic
literals, either positive or negative predicates. A pratéi¢like a function, consists of an identifier and a set
number of subterms. But unlike functions, predicates maystibterms to a Boolean representing the logical
validity of the predicaté. An example type checking literal might be a subtype contaimtmelationship.

The final logic type is also little more than a basic contaiigiect, albeit one with an important role in
unification and resolution. A clause is a group of literatgyitally conjoined implicitly, so mapping into a
natural Boolean valuation. The simple d@iause class represents clauses.

§54 Logic Class Use. <Logic representation use in custom applications, and ai@rsitions of the Visitor pattern

These logic classes are intended to be subclassed in gradtigoarticular, an application designer using
the WebCom logic programming facilities must first decidelogir desired logic. And given, the constants,
functions and predicates of this lodithey subclass corresponding logic representation classeatch.

For example, take the typing logic, described in detailrlatethis chapter. While naming constants in
this case is not overly helpful, it is helpful to subcl&ssction with the particular functions including set
conjunctive, disjunctive, and negation operations. Tteeseespectively subclassedAnd, Or, andNot.

Set conjunctive, disjunctive, and negation should notyds presented in logical terminology as they are
here. There are reasons, doing with how developers readhtrgriet type strings, for using the class names
And, Or, andNot. But this doesn't relate to the actual set based typing séosarConsequently, this use of
logic terminology for set operations may be confusing. Syntipinking of set conjunction, disjunction, and
negation, as set intersection, union, and complementgectisply will fix any confusion.

Aside from source code clarity, there is a parsing value ingusubclasses to represent logic elements.
Automatic parser generation tools can produce parsersiergee and populate expression trees consisting
of specialised subclass logic items. Specialised sutedasglicitly document the mapping between the data
representations used in automatic parsing and those ussaradre in the software application.

Before concluding with logic representation, it is wortting the Visitor pattern for the logic represen-
tation classes. As in the earlier software designs, a Vipittern is available to developers. In this case, the

76

5.1 Resolver

default Visitor adaptor incorporates an automatic dep#t fiearch through the logic expression tree. This
adaptor also provides a map attribute field, into which amfapiplementations may deposit objects on a per
term basic. So while walking an expression tree, adapter®aaily build up complicated result objects.

The main Visitor pattern application is as a logic expressiomparison tester. ThissgicComparator
class is an important within the unifier and resolution altpons and is implemented by depth first search in
the adaptor. This testing is for deep equality but uses bbgberence equality for primitive logic elements,
meaning especially that variables are not equal if they mténdt objects. This is bad since actual variables
themselves are not important, but rather their structudesarangement within an expression tree.

However, testing for equality modulo variable instances loa done via the unifier. That is, two clauses
are tested by unifying them and checking if the unifier stiostins just match variables to other variables.
This corresponds to an ignorable simple variable relabelin

5.1.2 Unifier Code

Unification is a key element in any resolver, and a descripth@reof is essential in discussing resolution or
logic programing. This section, included for completenesh briefly cover the basic unification algorithm.
Unification, of course, is a algorithm for matching two FORpressions, providing the substitutions, or
unifier, which result in the same expression when appliedtb bxpressions. Unifiers do not always exist
for FOPL expression, but if one does exist, then there is quanimost general unifier for those expression.

§55 Unification Algorithm. <Brief review of the unification algorithm

The unification algorithm, takes two FOPL literalsandm, and returns their most general unifier, if the
expressions are unifiable. Unification works by considedogesponding terms frotnandm in turn, and
matching them according to some basic unification rulesp8sgthe algorithm is unifying termsnds:

e If tis avariable, the substitutidn— sis first applied to the current most general unifier, then ddde
it. If instead,sis a variable, then the substitutien- t is used.

e Else, if sandt have the same function symbol and arity, then the subtermmadated to the current
goal list for the unifier. Sot; = s1,t, = S, ..., also need to be unified for the unificationsodindt
to succeed. The substitutions required for these unificatiwe combined in the most general unifier.
Note this also includes the case of constants, which arenjuitdry functions. So for constants to
match, they must have the same symbol, i.e., be the samentinst

A comprehensive outline of the pseudocode for this algarithay be found in Appendix C.
§56 Unification implementation. <Brief notes on the software implementation of the unificesitgorithm-

Figure 31 illustrates the unifier software UML. The appromotieliberate overkill in order to support the use
of optional occurs checking and custom unifier software.

77

5.1 Resolver

<<Runti neExcept i on>>
DuplicateSubstitutionException

]

Righthand side of goal

+Goal (in Ihs: Termin rhs: Term
+getLhs(): Term const

+get Rhs(): Term const

+appl y(in s:Substitution): void
Apply substitution to goal

<<Interface>>
Visitor
Visitor Pattern for logic elements

A

VisitorAdaptor

/\

Goal Substitution
Data class for unifier goals Data class for substitutions
-Ihs: Term -subs: Map
Lefthand side of goal Primitive substitutions
-rhs: Term

Unifier

+Substi tution()

+Substitution(in var:Variable,in term Tern)
Constructors

+get Substi tuti onvariabl es(): Set const

-set Substitution(in var:Variable,in term Term: void
Add a substitution

+get Substi tution(in var: Vari abl e):
+hasSubst i tution(in var: Vari abl e)
- contai nsSubstitution(in var:Variable,in termTern): bool ean const
#conpose(in var: Variable,in termTerm: void

Compose with new substitution

+compose(in subst: Substitution): void

+shal | owCopy(): Substitution

+trin(clause: Ol ause): Substitution

Term const
bool ean const

Template class for unifiers

+get Var i abl es(in cl ause: Ol ause): Set const

+get Vari abl es(in term Term: Set const

Get list of variables from term

+unify(in t:Termin s:Termin theta: Substitution): Substitution
+unify(in t:Termin s:Term: Substitution

Unify terms

+unify(in |:Literal,in mLiteral,in theta:Substitution): Substitution
+unify(in I:Literal,in mLiteral): Substitution
Unify literals

+uni fyConpl i mentary(in |:Literal,in mlLiteral):
Unify literals as a complementary pair

Substitution

+revariablise(in clause: O ause): Substitution

Revariablise a clause

VariablesListVisitor
Generate lists of variables

Substitutor
Make variable substitutions

NoOccursCheckUnifier
Checkless unifier

+variables(): Set
Get stored variables list

+reset(): void

Reset variables list

+vi sitVariabl e(in variabl e: Variabl e): void
+get Vari abl eParti tions(): Set[]

Get equivalence classes modulo variable identifier

substitution: Substitution
The substitution to apply

bi ndVari abl e(in v:Variable in t:Termin theta: Substitution,
in goal s: Stack): void

Bind a variable

+substitute(in termTermin subst:Substitution): Term
+substitute(in literal:Literal,in subst:Substitution): Literal

- processGoal (in goal s: Stack, in theta: Substitution): bool ean

Tackle next goal for unifier

+substitute(in clause: O ause.in subst:Substitution): O ause
+sub(in term Termin subst:Substitution): Term
+sub(in literal:Literal,in subst:Substitution): Literal

<<Runt i meExcept i on>>
OccursCheckFailureException

+sub(in cl ause: O ause, i n subst: Substitution): O ause
Perform various substitutions

+vi si t Constant (in constant: Constant): void
+vi si tVariabl e(in variabl e: Vari abl e): void
+vi si t Function(in function: Function): void
+visitLiteral (in literal:Literal): void

+visitdlause(in clause: O ause): void
1s to perform)

+uni fy(in t:Termin s:Termin theta: Substitution): Substitution
Implementation of unifier template method

i

OccursCheckUnifier
Checking unifier

+occursCheck(in v:Variable,in t:Term: void
Do an occurs check

##bi ndVari abl e(in v:Variable,in t:Termin theta:Substitution,

The user instantiates whichever concrete Unifier subclefenped, and invokes theni fy method with
theLiterals to unify. ASubstitution object is returned containing the most general unifier stwibsins,
ornull if the unification failed. Implementation-wise, the unitica arrangement is handled by thei fier
base class, with term unification being done by a templatbdlass method.NoOccursCheckUnifier

in goals: Stack): void
Reimplementation of variable binding

Figure 31: UML Diagram Unifier Code.

implements a no-frills unification which is extended wittcacs checking in th@ccursCheckUnifier.

Note that applying a substitution makes use of the earlsrudised Visitor pattern. Also worth noting is
that the resolver architecture, described below, is indeeet of unifier choice. So, for instance, a choice to

use occurs checking in the resolver may easily be changed.

5.1.3 Resolver Engine

Resolution is a process for determining whether a certainsel logic expression may be derived from a
base set of other clausal logic expressions. The mechahies@ution require negating the query clause
and identifying a logical contradiction, thus proving theégmal query. Resolution proceeds by resolving
complementary clauses to produce smaller clauses, armdirigitoward the empty clause which denotes a

desired contradiction. Resolution is a search problemhvimiany clause combination strategies.

Logic programming is organised by the resolver engine dmgl on unifier and logic representations, to

arrange the specification and execution of rule based lagigrams, by resolution tree search.

78

5.1 Resolver

With this engine, WebCom and third party developers can@aémgic programs as software objects and
query the inbuilt resolver to compute logic facts. So, withemdcrafted or parsed logic program object, the
developer may query whether certain facts are derivabta fhis program or not.

The resolution engine architecture is designed to allovirtberporation of diferent resolution strategies.
There is scope for the specification of candidate resolvanéach step of the resolution tree, which may
be used to implement resolution strategies solely deperatenesolvent selections, e.g., input resolution,
SLD resolution, etc. Also possible are resolvers which ipocate historical search information into next
resolvent selections. However, local selection of nexblkesnts is the only mechanism foffecting the
resolution algorithm, although this local knowledge magdi®rward to later selections.

The discussion of resolver architecture begins by conisigex limitation of the implementation before
moving to the examination of logic program representatians the identification of candidate resolvents or
complementary clauses. The base resolution itself witl theecovered, including an implementation of SLD
resolution, before concluding by looking at resolutioretstate management.

§57 WebCom Resolver Limitation. <The restriction of resolution queries to single literalsiceovercoming this drawbaek
The actual resolver implementation is limited to singlei¢dgeral fact checks. It cannot check the validity
of arbitrary clauses, since these may have more than omallité@his single literal restriction is both an
implementation convenience and runtinfigaency, since multiliteral clauses may give rise to muétiplause
guery negations which would make resolution le§cient.

Whether this is a severe restriction is debatable. With sifitgral queries, all the predicate relations in
the logic may be directly tested. Practical applicationtheflogic engine typically involve the construction
of reduction style rule bases, or rewrite productions, asel @pplications are typically only interested in
knowing definitive information, i.e., testing a single pieate with particular values.

However, this restriction does mean predicate implicaticemnot be directly tested. So, it is not immedi-
ately possible to test if a particular predicate value ieph certain other predicate value. This concern can
be handled in many ways, the simplest being a hypothesisllzggoach. That is, the antecedent expression
is assumed in the rule base and the consequent fact is tesstediagle literal query. Alternatively, propo-
sitional calculus rules may be coded within the FOPL logiase. So, for instance, predicates for logical
conjunction, disjunction, negation, and implication adeled® together with appropriate derivation rufes.

§58 Logic Program Representation. <Rule bases representations
For the purposes of resolution, it must be convenient to wéhlsets ofClause objects, the largest logical
expression units within the software. To this end, the saféacontains a basic collection type for clause
objects, theClauses class. The use of clause aggregation for logic program septation is examined here.
Alogic program may be represented as a set of clauses, ain tithWebCom resolver architecture, there
is no special need for the logic program software repreientéo be anything other than a list of clauses
forming the backing rules or knowledge base. The triggedahgctual computation is left the client code,
which issues single literal queries against the backing bbake.

79

5.1 Resolver

<<Interface>>
RuleFactory
Logic rule storage. Logic program.

CompositeRuleFactory
Aggregate RuleFactories

+get Al Rul es(in query: Ol ause): O auses const
Get the logic rules required for argument

0

-factories: Set
The constituent RuleFactories
-clauses: Set

List of clauses to always include in sets

+addRul eFactory(in factory: Rul eFactory): void
+addd ause(in cl ause: O ause): void

+get Al | Rul es(in query: O ause): O auses const
Return relevent clauses for argument resolution

Clauses
Clause management

-clauses: Set
Clauses to aggregate

+C auses()

+C auses(in cl ause: d ause)

+Q auses(in cl auses: Col | ecti on)
Constructors

+get Ol auses(): Set const
+add(in clause: O ause): void

ComplementaryClauses
Store complementary clause data

-posi tived ause: O ause
-positiveliteral: Literal
-negatived ause: O ause
-negativeLiteral

-unifier: Substitution
The most general unifier

+Conpl enent aryd auses(in positived ause: d ause,
in positiveLiteral:Literal,
in negatived ause: cl ause,
in negativeLiteral:Literal,
in unifier:Substitution)

Constructor
+add(in cl auses: O auses): void
Lgetiterator(): Iterator const +get Posi tived ause(): O ause const
+get Numdl auses(): int const +getPosi tivelLiteral (): Literal const
+get Conpl enent arydl auses(in cl ause: d ause, +get Negatived ause(): O ause const
inunifier:Unifier): Iterator const +get Negativeliteral (): Literal const
+get Conpl enent aryd auses(in cl ause: d ause, +getUnifier(): Substitution const
inliteral:Literal, .
+resolve(): dause

inunifier:Unifierj: Iterator const

Get complementary clauses for argument Resolve clauses together

Figure 32: UML Diagram Logic Program Representation.

Logic programs may be representedCaauses objects, this clause aggregation playing a fundamental
container role. However, it is far more convenient to repnésule bases encapsulated within objects, which
must then be asked for clauses relevant to a particular ade Query. Instead of a list of clauses, program
representation is by factory objects returning lists ofisks particular given query resolutions.

Such a result list may, in fact, be a full list of rule base sk& and as such, the relevance query view also
encompasses the basic list view of logic rule bases. The iwesvdo not coincide, since asking for relevant
clauses introduces additional possibilities in terms & schemata and large rule base representation.

This view is dictated by th&uleFactory interface, consisting of the singtgetAl1Rules(Clause)
method for establishing clauses necessary for a query. Xikeng library includes a concrete implementa-
tion of this interface, th€ompositeRuleFactory class. This is a simple container fO0tauses objects,
facilitating both the basic list logic program represeiotatand a composition facility.

In addition to rule lists and single rule representati@mpositeRuleFactory facilitates the composi-
tion of RuleFactory objects. TheCompositeRuleFactory contains fields for specifying rule lists always
required for queries, and so always returned bydgéeAllRules method. But also included are fields for
RuleFactory objects. These subfactories are queried for required agdgsart of anygetAllRules calls,
and thus filter up required rules as per standard Compoditerpapplication.

§59 Complementary Clause Identification. <A consideration of complementary clause identification
Turning to the question of complementary clause generatidask performed almost exclusively within the

80

5.1 Resolver

Clauses class. This operation involves a scan of the full clausésdiseach step of which is nested a two list
complete pairwise element examination, and so at very,leastprising a somewhat quadratic order cost.
There is scope fotlauses reimplementation to optimise complementary clause ifieation.

A complementary clause pair is a pair of clauses sharingfaabte literal, positive in one of the clauses,
negative in the order. Resolution, the critical part of tealution process, is the elimination of this literal.
The establishment of these resolution candidates is gxheticomplementary clause identification task.

In terms of resolution operation, it is best to check a palticclause against all clauses i€bauses
object, dfectively a chunk of the fact base. This check should deteralihcomplementary pairs involving
the test clause and any clause from@hauses aggregation. To do this, each test clause literal is consitle
in turn against each literal from each clause within@heuses object. On determining a potential comple-
mentary literal, i.e., one of the same function symbol arbsijte sign, a unification is attempted to reconcile
the subterms. A successful unification indicates a compiang pair.

Complementary pairs are representedbyplementaryPair objects, data classes maintaining the pos-
itive and negative literals and their containing clausesteference to the unifier substitution is also kept,
since this unifier is applied on the resolvents during theltg®n process.

It is critical for the resolver code to implement some inagxihashing, or structured data storage to
improve on this neve complementary pair generation scheme. Any indexinditénal symbol for instance,
is a one time cost which is easily repaid since clauses ardlitare repeatedly examined during the checking
process. Since each clause in the rule base for a particuéay gnight potentially be examined at every
resolution step, the complementary clause lookup shoultebeily optimised.

§60 Resolution. <The resolution algorithm boilerplate

The resolver algorithm process begins with a particulausga one of the available initial clauses in the
rule base, or perhaps the negated query clause. A step is imalke resolution process by resolving a
complementary pair referencing the current clause, sareitimg a literal, but also potentially introducing a
number of new literals. The goal is to resolve out the enlmase.

Because there is choice in the initial clause selection,iaride complementary pair selection at each
step, there is a tree of possible resolution paths. The jobeofesolver is to search this resolution tree for a
path producing a contradiction or empty clause, thus vafidahe query clause.

In the basic approach, any complementary pair may be redalvany time to extend the set of clauses
available for forming complementary pairs. In practicetsunrestricted free search is hopelesslyfiogent,
giving rise to slimmed search strategies of variofisaiveness. These strategies typically reduce the choice
available at each resolution step, thus pruning the seaseh Strategies vary in the amount of choice they
permit, and in the expressiveness of the queries and rusesfma which they are accurate.

The basic common selection reductions might involve reéaginalf of any complementary pair to be the
negated query or a descendant, or requiring half of any cemmghtary pair chosen to be in the initial set of
clauses. Other search pruning include matching on the e@djegrals in Horn clauses only, for instance.

81

5.1 Resolver

<<Abstract >>
Resolver
Resolver Implementation Basecase

-rules: O auses

The logic program

-queryNeg: O ause

The fact to refute

~unifier: Unifier

Unifier to use in resolution
-queryQueue: Resol ver St at eQueue

In state queue

-visited: Resol verStateVisitedList
Out state queue

-refutation: Resol verState

The current candidate refutation state

+Resol ver (in query: Ol ause, i n_rul es: Rul eFactory,
in unifier:Unifier)

Constructor

+getRul es(): O auses const

Get logic program

-markvisited(in state: Resol verState): void

-isVisited(in state:Resol verState): bool ean

-resol ve(in query: O ause,in compl enent: Conpl enent aryQ auses) : O ause
Perform clause resolution

-negate(in clause: O ause): O ause const

Negate clause literals

-------------- > |

ResolverState
Step in the resolution tree

-current: O ause

Current clause of resolution tree
-substitution: Substitution
Current resolution substitution
-parent: Resol verState

Parent in the resolution tree
-metric: int

Hashing convenience
-signature: String

Hashing convenience

+Resol verState(in current: dause,in substitution: Substitution,
in parent: Resol ver St at e)

Constructor

+getParent (): Resol verState const
+getQurrent(): O ause const

+get Substitution(): Substitution const
+getMetric(): int const
+getSignature(): String const

+i sRefutation(): bool ean const

Is this state a refutation state?

+get Resol vents(in query:Clause,in unifier:Unifier): Iterator const
Get candidate resolvents from resolver implementation
+refute(): Resol verState
Generic refutation algorithm SLDResolver
+processResol vent (i n state: Resol verState): List const Implement SLD Resolution
Do a resolution step -

l<———{Storesol ver (in clause: G ause, in rul es: Rul eFactory,
+hasNext (): bool ean const in unifier:nifier)
Is there another refutation? Constructor
+next (): Cbject const +get Resol vents(in query:Cause,in unifier:Unifier): Iterator const
Get next refutation Implement template method for SLD resolvents

Figure 33: UML Diagram Logic Resolution.

Within the WebCom resolver engine,ima search is implemented, together with an option to spdied
set of permitted complementary pairs. In this wayiatent search minimization strategies may be expressed
in a uniform architecture. So, although developers mayyepplimizations in terms of search minimization,
they cannot apply otherfiéciencies particular to the search implementation. Thisoisanhandicap, in that
effective optimization of search bound tasks primarily ineslvninimising the search tree.

The resolver search implementation is orchestrated fr@Rdkolver class, or from a concrete realisa-
tion of this class. Resolver state consists of the currentsd to resolve, a substitution involved in getting to
this clause, and a link to the parent state. Initially, respbktates representing potential start states, namely
negated query clauses with null substitutions and pararégushed on a queue.

At each step of the resolution process, the next state isqubfypm this state queue and examined. If
this state is a contradiction, i.e., an empty clause, itaggnts a refutation of the negated query, and thus an
establishment of the required query. The substitution yecod) this goal state is then reported to the original
client, whereupon further refutations may or may not be estgd.

If the state is not a refutation, a list of potential resolgan collected by querying the concr@esolver
class implementation for permitted resolvents in the curséate. This is where the designer has discretion
to curtail the search, an example of which will be illustchabelow.

Given a list of permitted resolvents, each resolvent islvesldn turn against the current clause, producing
a potential next state. This next state consists of thevesbtlause, the current substitution composed with

82

5.1 Resolver

the resolvent unifier, and the current state, now takingdleeaf parent state. Each next state is pushed onto
the resolver state queue. To complete the resolver steputhent state is marked visited and prohibited from
entering the state queue again. The next resolver staterigtbpped from the state queue for processing.

A long search is an unavoidable possibility, and represieetaf general Al search fliculties. However
termination may result from an early isolated refutati@ther than ultimate search tree exhaustion.

Note theResolver class may be customized with the user’s choice of unifier.e8ber of the unifiers
from previous discussion, or any custom unifier impleméoaimay be used in the resolution process unifi-
cations. With careful specification, it may even be posdiblaix and match unifiers if required. In this case,
the dficientNoOccursCheckUnifier may be used for common unification tasks where speed is @édsent
saving the more inficientOccursCheckUni fier for less common verification use perhaps.

§61 SLD Resolution. <Outline of default resolution strategy and exampkssolver implementations

As mentioned, dferent resolution strategies are made possible by implextiens of theResolver class
template method. One such implementation, the defaullwesstor type checking applications, is in the
SLDResolver class, an implementation of Selected Linear Definite (Sle3ptution.

In SLD resolution, the permitted resolvents are those iriagl negative literals from the query clause.
That s, one half of each resolvent pair must be a negatelitn the query clause. This significantly prunes
the search tree, especially if the query clause is small asddw negative literals.

The SLD resolution implementation requires 8i®Resolver class to exten®esolver. The method
of interest is the concrete realisationgzftResolvents, one of only two methods in th&.DResolver class
due to extensive templating, the other method being a amistt ThegetResolvents method extracts
negative literals from the query, or current clause, angrnstany complementary pairs in the rule base.

SLD resolution is a tradébbetween #iciency and application, in that large portions of the seareé
are pruned but the resolution is only guaranteed to retwrtdrect result is used on Horne clauses. This is
not a severe restriction in reality, and SLD resolution ieg/\xcommon resolution strategy. For type checking
purposes , the restriction to Horne clauses is met, and St®uton may be satisfactorily applied.

This implementation of SLD resolution is straightforwaes, are most other common resolution strate-
gies. These other resolution strategies involve similanhall getResolvent methods, describing the par-
ticular resolvent sets the strategy in question permits.

§62 State List Management. <Notes regarding the management of state queues and visitsd |
Before leaving the discussion of resolver architecturelémgntation and beginning to consider example
logics, it is examining state management structures inekelver setup. Resolver state is managed in the
ResolverState object, containing fields for the earlier outlined congittiresolver state elements, namely
the current clause, the substitution to date and the patatet s

ResolverState objects, once constructed, are always pushed ontBdkelverStateQueue, a little
disguised FIFO queue class masquerading with a fancy nameeRasolverState objects have been de-
gueued and processed, they are passed to a second managfenctune, th&®esolverStateVisitedList.

83

5.1 Resolver

ResolverState
Step in the resolution tree

ResolverStateQueue

-current: O ause

Current clause of resolution tree
-substitution: Substitution
Current resolution substitution
-parent: Resol verState

Parent in the resolution tree
-netric: int

Hashing convenience

Queue of next ResolverStates

<<Logi ¢ Visitor>>
ConstantsListVisitor

~del egate: List
Backing datastructure

+constants(): List const
+reset(): void
+vi si t Constant (in constant: Constant): void

l~[Fdequeue(): Resolverstate
+i sEnpty(): bool ean const

+enqueue(in state: Resol ver State): void

+enqueueAl | (in states:List): void

VisitorAdaptor

-signature: String
Hashing convenience

<<Logi ¢ Visitor>>
MetricSignatureVisitor
Compute metrics and signatures

+Resol ver State(in current: G ause,in sub: Substitution,
in parent: Resol ver State)

ResolverStateVisitedList
+get Parent (): Resol verState const Out state list
+getCurrent (): O ause const k| el egate: rashmap

+get Substitution(): Substitution const Backing datastructure
+getMetric(): int const

+get Si gnature(): String const
+i sRefutation(): bool ean const
Is this state a refutation state?

Constructor

+get Metric(): int const

getSignature(): String const

+vi si t Constant (i n constant: Constant): void
+visi tVariabl e(in variabl e: Variable): void
+vi si t Function(in functi on: Function): void
+visitliteral (in literal:Literal): void
+vi sitdause(in clause: O ause): void

+add(in state: Resol ver State): void
+cont ai ns(stat e: Resol verState): bool ean

Figure 34: UML Diagram State Management.

This is a collection of alResolverStates visited to date in the resolution, maintained to prevevisitng.
At its most basic, this is a simple map type, with methods $eithnew states to check state membership.

Fastinsertion and lookup is required in the visited lised&uctures, and in this case a hashing implemen-
tation is employed. There are some serious drawbacks inrfgeRésolverState objects, the most pressing
being in terms of memory consumption.R&solverState might unfortunately include a substantial quan-
tity of information, and given that large quantities of sstates might be expected during a refutation search,
there are particular requirements to implement a memoriyniged hashing scheme.

It turns out that just storing the clause element i§isient since the visited list is only used to determine
circularity in the search tree and is never required to pcedactuaResolverState objects. Any required
state objects are always to hand when needed. For instareeefutation point, the current state contains
enough references to track the full refutation.

Furthermore, the actual logic objects are not requireceeitlit is suficient to produce a unique text
signature for each state clause and containing all requiedmation. Then, to test membership in the
visited list, it sfices to compute the signature of the query state and use timateasin the hashtable.

Unique signatures may be computed by walking the logic esgioa tree and encoding the structure
symbols in abbreviated form. Computation of signature®isedby theletricSignatureVisitor, a logic
Visitor pattern implementation. The signature itself imfied by marking logic expression elements in prefix
walk order, and encoding the types as characters augmeittedpecific data. So, for instance, a function
fun is replaced by the string “f(fun)”, a constarinst by “c(const)” and so forth. Such string encodings are
more memory fficient than their counterpart objects, even if slightly lenthan absolutely necessary.

Note that variables are represented by “v(idf where var_id is an integer identifier attributed to
the variable by the signature generation process. In this vaiables which share the same identifier are
the same for signature and hashing purposes. There is, bowhe concern of variable substitutions and

84

5.2 Example: Typing Language

relabellings appearing to beftérent. It is debatable whether an expression with a reldbelgable is the
same as the original expression, especially in the confextollected substitution.

This is managed in signature generation as follows. Idensifire assigned incrementally to variables as
they are seen in the visit order. The first variable encoedter visit order receives the identifier 1, the next
receives 2, and so forth. If a variable is reencounterechdutie walk, it receives the identifier originally
assigned. So, the local structure of variable placementstégned, even if the precise variable instances
are lost. This means two logic expression signatures caedpsgparately will give the same result if the
expressions are equal modulo variable instance or nafning.

In any case, the current implementation depends on sigsafar optimisation gain. There is plenty of
garbage reclaim potential during the resolution procdssollld be better not to generate the garbage in the
first place, but most state data may be reclaimed with the &giushed onto the out queue, provided none
of its child states are active. Certainly, a state may bexn@ed on a post order traversal move.

5.2 Example: Typing Language

This section is concerned with the most important exampéc)alescribing a type value expression logic.
This is formulated in terms of type sets and constitutesype thecking application basis. The WebCom
resolver support was initially designed specifically toregs these logical type structures.

Basically, the logic expresses possible types as sets afclassnames from a presumed universal set of
all classname¥? Furthermore, classname constants may be combined intbysets of intersection, union
and universal set complement. Together these elementsluette possible types which may be associated
to operator inputs and outputs. There is a single preditia#e,of the subtype inclusion relation, really a
subset inclusion relation. This is fundamentally everyghiequired to validate graph type correctness.

§63 Formal Logic. <A strict definition of the type logic

A more formal description of this basic type logic operatioii be presented here. Begin by defining the
logic Types= (7, Q,II) where7 is the set of possible type values. The set of all valid Jasastlames
only forms a strict subset of. A proper definition of7” requires an inductive definition, incorporating some
formal symboling business. So, defiieas follows:

e Any Java classname is an elementaf
e If x e 77, then the formal symbol Natf is an element of".
e Similarly, if X,y € 7, then the formal symbols Ang(y) and Orf, y) are also ir7".

And, 7 is the least set with these propertiésThis means thaf is the set with all Java classes and any
combination involving the function symbols Not, And, and ®lote these formal symbols are intended to
refer to set complement, set intersection, and set uniorsfaralard interpretation.

85

5.2 Example: Typing Language

The sefQ = {And, Or, Not} is the set of logic functions. Note, these functions are nttally yet defined.
Their earlier use was intended only to be helpful in forming® set, and did not actually define the objects.
Luckily, the functions are easy to define, given the formétots defined earlier. The function Nof: — 7~
sendsx — Not(x). Similarly, And : 7 x 7 — 7 sends % y) — And(x,y) and Or :7 x 7 — 7 sends
(x,y) = Or(x,y). Charmingly straightforward definitioris.

With the basic set of elements and logical functions dorergetihemains just the predicate definitions to
finalise the logic syntax. The set of predicate$lis {Subtype 7 x T — {true falsg}. This single pred-
icate captures the subtyping relation, the semantic diefindf which being simplicity itself. The Subtype
predicate is interpreted semantically as the subsetoalatn the se, where connectives have been given
interpretations as set operations. However, the syntdefiaition relation required by the resolver, is more
awkward, consisting of numerous syntactic rules.

But before getting into the nasty business of outlining &h®gtactic derivation rules, some examples and
implementation notes might be helpful. Example valid lagierms include:

e Or(java.lang.Integer, java.lang.Long, java.lang.Double) — Here any of the types under the
Or function are permitted. Note the shorthand in writingladl terms under the same function symbol,
rather than cascading Or functions. For convenience, redifguming some preprocessing, or that the
Or, And functions are overloaded in tieset to handle arbitrary aritiés.

e And(X, java.lang.Byte) — The expresses a class that Byae and also of the class or interface to
which variableX is bound.

e Not(Or(java.lang.Byte, java.lang.Short)) — Any type butByte andShort.

Implementation-wise, th&ypedogic uses subclasses as directed in the section on logieseptation. These
classes, illustrated in Figure 35 are all trivial extensioftheir respective parent classes.

§64 Rules. <Outline of syntactic rules

The Typeslogic syntactic deduction rules are represented in thevsoét by TypeRulesFactory, a sub-
class ofRulesFactory. These are the manipulations valid within the logic, usegrmuce derivations.
For implementation purposes, these rules are actuallgsepted in clausal form, but are presented here in
traditional form. TheTypedogic rules include:

e Commutativity of the And, Or functions in both places under Subtype predicate:
Subtype(Andx, y), 2 — Subtype(Andy, X), 2)
Subtypet, And(x, y)) — Subtypeg, And(y, X))

Subtype(Ork,y), 2) — Subtype(Ox, x), 2)
Subtypet, Or(x,y)) — Subtypeg, Or(y, X))

86

5.2 Example: Typing Language

<<Interface>>
Visitor

A

Subtype
Class to represent Subtype literals

VisitorAdaptor

A\

-Subtype: String = "Subtype"
Parse token

<<Logic Visitor>>
TypesVisitor
Adapt Visitor to Types nominature

+visita(in or:Qr): void
+visitAnd(in and: And): void
+visitNot(in not:Not): void

+Subt ype(in positive: bool ean, in subtype: Term
in supertype: Term
Constructor
+get Subt ype(): Term const
+get Supertype(): Term const
+create(in positive:bool ean,in terms: Tern{]): Function const
Factory method

+vi it Subtype(in subtype: Subtype): void
+vi si t Function(in function: Function): void

+visitliteral (in literal:Literal): void

H Original Logic Representation Classes '
: Term |—O} Literal |—O| Clause |

H Function | | Variable | | Constant |

: A

Not And Or
Class to represent Not functions Class to represent And functions Class to represent Or functions
-Not: String = "Not" SAND String = "And" -Q: String = "O"

Parse token

Parse token

Parse token

+Not (in term Tern)
Constructor

+create(in terms:Tern{]): Function const
Factory method

+And(in termi:Termin terng: Tern)
Constructor

+create(in terms: Ternf]): Function const
Factory method

+0r(in termi:Termin terng: Term
Constructor

+create(in terms: Tern{]): Function const
Factory method

Figure 35: UML DiagraniTypesimplementation.

e Or commutativity under conjunctive normal form. And comatirtity is not needed:

Subtype(And(OrX, y), 2), w) — Subtype(And(Oy, X), 2), w)
Subtypew, And(Or(X, y), 2)) — Subtypeg, And(Or(y, X), 2))

e Associativity of the And, Or functions in both places unde Subtype predicate:

Subtype(And(AndX, y), 2), w) — Subtype(Andx, And(y, 2)), w)
Subtypeg, And(And(X, y), 2),) — Subtypeg, And(x, And(y, 2)))
Subtype(Or(0Orx, y), 2), w) — Subtype(Orx, Or(y, 2)), w)
Subtypew, And(Or(x, y), 2),) — Subtypeg, Or(x, Or(y, 2)))

e And-Or distribution in conjunctive normal form direction:

Subtypek, Or(And(y, 2), w)) — Subtypek, And(Or(y, w), Or(z, w)))
Subtype(Or(Andy, 2), w), X) — Subtype(And(On, w), Or(z, w)), X)

87

5.2 Example: Typing Language

e De Morgan Laws, in conjunctive normal form direction:

Subtype(Not(Andx, y)), 2 — Subtype(Or(NotX), Not(y)), 2)
Subtype(Not(Orx, y)), 2 — Subtype(And(Not), Not(y)), 2)
Subtypeg, Not(And(X, y))) — Subtypet, Or(Not(x), Not(y)))
Subtypet, Not(Or(x, y))) — Subtypet, And(Not(x), Not(y)))

e Double negation rules. Needed under the And symbol and wwhgunctive normal form:

Subtypek, Not(Not(y))) — Subtypek,y)
Subtypek, And(Not(Notfy)), 2)) — Subtypek, And(y, 2))
Subtypek, And(Not(Notfy)), 2)) — Subtypek, And(y, 2))

e Subtype identity:
Subtypex, X)

e Subtype transitivity:
Subtypek, y) A Subtypey, 2) — Subtypek, 2)

e Subtype inclusion rules:

Subtype(Andx, y), X)
Subtypeg, Or(x, y))
Subtypek, 20 — Subtype(Andx,y), 2)
Subtype(Orx, y), 2 — Subtypek, 2)

e Subtype connectivity distribution rules:

Subtypet, And(x,y)) — Subtypet, X) A Subtypet, y)
Subtype(Orx, y), 2 — Subtypek, 2 A Subtypey, 2)

e Actual subtype facts. For each class or interfaceith immediate superclass or superinterfdcthere
must be a fact of the form Subtymed). Further, for each interfacé implemented by class, there
must be a fact of the form Subtyme(). These facts need not be explicitly specified, but they rbest
available from th®ulesFactory via a schema if necessary. These facts may be generatedgsesl!
of interest by Java reflection and by walking up the inhedtainee.

88

5.2 Example: Typing Language

§65 Example Derivations. «lllustrative examples of derivations
As an example of these deduction rules, consider the dienivaf the fact:

Subtypefava.lang.Integer, java.lang.Object)
Firstly, by virtue of the last rule, the following class haechy facts are directly available:

Subtypefava.lang.Integer, java.lang.Numeric)

Subtypefava.lang.Numeric, java.lang.Object)

These may be combined by using the Subtype transitivitytauggve the following implication:

Subtypefava.lang.Integer, java.lang.Numeric)
A Subtypefava.lang.Numeric, java.lang.Object)

— Subtypefava.lang.Integer, java.lang.Object)

Now, the left hand side of this is a fact by propositional tbgkpressior* So, the right hand side is derived
by Modus Ponens, and happens to be the desired goal:

Subtypefava.lang.Integer, java.lang.Object)
Consider instead, the slightly more complicated examplieoif/ing:
Subtypeéind(java.lang.Integer, java.lang.Numeric), java.lang.Object)
This is derived from the Subtype inclusion rule:
Subtypek, 20 — Subtype(Andx,y), 2)

With the instantiationx « java.lang.Integer,y « java.lang.Numeric, z «< java.lang.Object.
Now, since the left hand side holds by previous work, thetrigind side may be derived by Modus Ponens,
and happens to be the desired derivation goal:

Subtype(Andfava.lang.Integer, java.lang.Numeric), java.lang.Object)

§66 Variable Binding. <A mention of variable binding

Before leaving the discussion of logic rules, there are afemts to mention about variable binding. In

type checking, operation output types are validated agiflewing operation input types using the Subtype
predicate, requiring maintenance of Subtype(ouipput) facts. This is straightforward in the case that

89

5.3 Example: Security Reduction Rules

output and inputs types are constant terms, or functionsmgtant terms which do not involve variables.

The use of variables in input or output types might help espi@ lack of definite typing information,
or may indicate a high degree of typing flexibility is possiblThe general idea is that variables would be
allowed to float and bind freely in the Subtype(outpgput) expressions.

There are advantages to be gained in binding variablesmiti@ scope of an operation. So, suppose
variable X appears in input type to an operation, and is bound to sonfeeueikpression as part of the
Subtype(outpyinput) establishment, then if that variable also appeatiséroperation output type, or in any
of the other inputs, then it must respect the previouslybdistaed restraint. In fact, the individual values for
a variable must be unified to produce a most accurate typstgaist for that variable.

More will be said later about the typing mechanism employe@ondensed Graphs. In particular, the
nonlocal implications of allowing local variable bindingall be discussed, together with algorithms for the
type validation of what now amounts to a DAG with intercorieeloconstraints on the arcs.

5.3 Example: Security Reduction Rules

As an example application of this logic programming streetsecurity reduction rules will be briefly con-
sidered. So, although designed for implementing type areeilidations, the logic support may be reused
within WebCom for a variety of useful purposes, not necelgsgping related.

Security reduction rules are a niche application of the ®ovthich logic programming is ideally suited.
That logic programming may be leveraged for small conceiittsinva large software design, like WebCom,
is of utility to the programmers of this system. With the logirogramming support in place, applications
with concise FOPL expressions, such as the security rextuailes, may be veryfiectively solved.

The backdrop to this application is the use of Keynote witthie WebCom security system. Secure
names are used to provide authentication mechanisms, aststof strings describing particular element of
the WebCom system, be they nodes, graph, operations, arelraents. The actual security architecture
particulars within WebCom are not of interest. Instead, vit@mportant is that precise secure names can
tend to be long unwieldy strings. So, for display purposes, more importantly for group authentication
and organisation reasons, these secure names have tegufasion requirements. For instance, a user might
have a particular secure name expressing membership afygartdomain or company group organisation.
This name must be easily reduced textually in order to exthég information.

Secure names are organised in a treelike structure whichbmagveraged easily into FOPL symbols.
In fact, the correspondence between secure names and FQRissions is very close. Logic programming
excels at such text parsing applications, and is ideal fptementing secure name related tasks.

One such task is the aforementioned name manipulation sRuéeprescribed in order to transform long
precise names into shorter names. These shorter names miaynconly specific information required to
make a desired authentication within WebCom. For instaad®ebCom secure name might contain fields
for adomain and an ID. In this case, the name could be writtéma formname (domain (xxx), id(yyy)).

90

Chapter Notes

Notice that this syntax, used by the secure name applicatedready has FOPL structure. One reason for
reduction rules, is that in many authentication cases drdydomain is of interest and all requests from a
particular domain are accepted, ixgame (domain(xxx), null) is suficient for authentication.

The job of the reduction rules is to determine if a given seauame matches any of a set of general
acceptable names, specified in the security policies. oétvs required to transformame (domain (xxx) ,
id(yyy)) into name (domain(xxx), null), according to rules such as:

name(domain(Y),null) « name(domain(Y), X)

Given this example, a logic programming based design fodaation rule engine is straightforward. Syn-
tactically, the function symbolsame, domain andid are required, together with appropriate constants for
the domain and ID fields. A two place predicateducesTo is needed to express the reduction relationship
between such elements as in the example, i.e., the ealéeheaomes:

reducesTo(name(domain(Y), X), name(domain(Y), null))

So, reduction rules may be specified textually, avoidingreagd to hardcode reduction rules into the engine.
This is just a single simple reduction rule example. A typioagplementation would include more name
fields, and more complicated name reductions. But, the lideicis the same.

To verify an authentication, the system requires a secureenia test, and a list of the acceptable secure
names in FOPL form. The resolver checks if the test name e=thocan acceptable names, by simple queries.
The resolver also takes care of applying reduction rulesipbeitimes, if necessary, backing out of reduction
paths, etc. This invisible search work implementationvg&inable to the reduction rule engine programmer.
She just needs to express the logic, do whatever parsingéssary, and invoke the resolver.

Note there are many similarities with the typing system.sTiiunsurprising given that both are search
implementations, and illustrates the value of incorpagathe resolver engine into WebCom. Future search
applications may use this existing code to greatly simpfifplementation work.

Chapter Notes

IWhich is what they are really doing in logic programming anywdo it helps to hide this from the novice.

2And in fact, this is the point. It is up to the logic designeagsign a meaning, or amterpretationto these items in a way that make
senses for the particular application. FOPL works in the sauvaener regardless of the actual application and interjwatat

3This validity interpretation is done semantically using ierpretation function.

4Really just the functions and predicates. Developers azewgaged to subclagenstant to introduce meaningful class names.

5Not all of conjunction, disjunction, negation, and implicatare required of course. Logical implication isfatient and probably
the most convenient. Conjunction, disjunction and negatigrht be implemented by a prepass syntactic rewrite.

6This latter approach has much overlap with the type set logichwill be seen later in relation to the type checking loggome
implementation hints for such a propositional logic overlayrha inferred from this type checking logic.

91

Chapter Notes

"More precisely, the cost is expressechas wheren is the number of literals in the test clause, amis the total number of literals
in all the clauses managed by tGgauses object. It is also the number of literals in the query clausges the number of managed
clauses times the average number of literals per clause tiltheses object.

8The actual occurrence of search tree exhaustion is quaslenFor certain small logics, exhaustion will come quickiyl &e an
effective decision tool. For medium logics, exhaustion can bexgensive and undesirable computation, and for largerdogiarch
exhaustion will be preceded by resource exhaustion.

9Substitution values may filer, of course, in the carried state substitution, so a stasenogbe permitted on the in state queue if
it was seen before but with afférent substitution. This is the accepted position and ieddent of variable structure representation
concerns, anyway. The alternative, incorporating suligiit data into determinations of visited states, is nottrakc

10The space of possible Java classnames is countably infinitertunately. However, it is always possible to reason algpes
within the context of a particular JVM. And the set of typesitable to this JVM is finite, being bounded above by the setliodava
classes ever implemented, of course. So, it is possible tondepefiniteness in arguments about the type logic in pracigpically,
the denumerable space for Java classnames will be employedrfeerdence of expression, but with the understanding theater
necessary, the brutality of finiteness may be subsumed intovemgts. Note since the set of classnames is considered finitees
powerset is also finite. Logic constants are taken from tbvggsset and not from the ground set since logic constantseaseof classes.

1A least such set exists by the virtue of the fact that setsfyitg these criteria may be formed into a nonempty poset undarsion.
Then some standard arguments, involving presuming no uniqsé éement exists and deriving an easy contradiction, wiliee a
set with the desired properties exists. But, it is easidrtusay Zorn’s Lemma downward on top of the chain, and be dorteitvitVe
know things won't disappear out from under this chain, so recfiae.

120f course, this is not really true. The production of elemé¢atsopulate7” by depending on the syntactic nature of the function
names is quite a very distinct thing from imbuing them with actional definition as done at this point in the text. Th&eatience is
quite important, being the essential notion in stepping feosyntactic form to a semantic form where the semantic qualibyilt from
the syntactic element. Which isn't a straightforward thinglatbut still charming.

13This doesn’t matter either way, since the And, Or functiorsamsociative both in semantic interpretation and the sjataes.

14This is the real propositional logic, not the pretend on¢ ltaks like it is hiding in the And, Or functions of the logic.

15This parsing and resolver invocation work appears alsodrytpe checker application. Since these aspects of the hgmking will
be covered in fine detail in the next chapter, there is no ezadon to illustrate them in regards to the security redoctite application.

92

Type Checking

his chapter brings together all the key software structpregiously considered in this dissertation,

to provide Condensed Graph type validation software. Mefiarination notations specify typing

information. The Event API facilitates implementation katit WebCom core modifications. The
Module API provides the application packaging and thirdyarterface. And, the resolver engine imple-
ments basic typing verifications as outlined in Tiypedogic description.

However, this does not exhaust all requirements. Thereirsncansiderations in translating metainfor-
mation type strings into usable software elements, nanegigesentations in thE/pesobject hierarchy. Also
warranting discussion is the type checking modularisatibhe various module configurations and roles,
together with the type checking application modes, arérmdlin this chapter.

Finally, the checker algorithms are outlined with attentjmaid to the graph walking problems in the
design time verification, and to dealing with possible veaifion paths. The chapter concludes with some
notes on further directions, and recalls the developmaeritsis dissertation.

6.1 Parser

The syntactic portions of th&ypeslogic have already been outlined, consisting essentidith® functions
And, Or, Not, together with the predicate SubType, and @rstymbols, one for each possible Java class-
name string in fully quantified notation.

93

6.1 Parser

So far, theTypeslogic implementation has consisted of specialized exterssbf basic logic software
objects. This enableBypesstatements to be formed programmatically and verified byreékelver engine.
But programmatic construction is unwieldy and restrainsasy dynamic expression of logic statements.

The Typedogic thus requires a parser frontend. While parser impleatiem is not excessively flicult,
it helps to carefully examine this implementation and iatéion with existing logic software. This does
represent a diversion before the main type checking digmudsowever.

Once implemented, the parser converts operkatdb type string data into actual software logic classes.
So, when type checking a particular operation,théo for that operation is instantiated and the type strings
parsed: The results of this parse are then used by the resolver tfyvee satisfaction of input operand and
output types with the types incident on them.

The parser is generated using the SableCC parser geneyatowtitten by Etienne M. Gagnon. This
tool is applied to a BNF description of tlig/peslogic, and produces comprehensive parser software which
will be described presently. BNF outline particulars wil imentioned first.

§67 BNF Description. <A BNF description for the type element parsing

Figure 36 illustrates th@&ypedogic BNF. A complete grammar including token and helpedations, and
as used in the SableCC processing, may be found in Appendih®Typeslogic BNF start symbol is the
Type production, describing acceptable type strings. &laeseptable types are:

¢ A parenthesised Type production, included for conveniémeiting type strings’
e A string denoting a constant in the logic, i.e., a Java clasenstring.

¢ A variable type denoted by the VAR symbol and a parenthesiagdble identifier.
e A Not type, denoted by the NOT symbol and argument type torinve

e An And type, denoted by AND and a parenthesised list of type®hjoin. This list, expressed by the
And_List production, may contain more than just two types fonearient cascaded And expression.

e An Or type following the model of the And type, but instead poited by the OiList production.

§68 SableCC Parser. <The SableCC produced parser software
SableCC is a parser generator tool, in the style of a lex aed gambination, designed by Etienne M.
Gagnon. It provides for both DFA lexing and LALR(1) parsingskd on eBNF grammar syntax. The real
SableCC value, though, is its OO parser generation. Sabte@ilit consists not only of basic lexer automa-
ton and parser classes, but also of an OO abstract syntaxased on the input BNF. SableCC automates the
task of producing a parsand complementary tree hierarchy. So, given a grammar, theeS&btool may be
applied without further work to produce a complete parséimswe architecture.

With SableCC, a software designer need only provide an iBdNE, and implement a visitor adaptor
to perform desired semantic operations on the generatathabsyntax tree. Ease of application and the

94

6.1 Parser

(Type) — “C (Type))’

{ConstantName String)

‘VAR’ ‘(’ (VariableNameString) ‘)’
‘NOT” “(” (Type) “)’

‘AND’ “(’ (And_List))’

‘OR’ “(’ (Or_List) “)’

(And_Listy — (Type)
| (And_Listy ‘,’ (Type)

(Or_Listy — (Type)
| (Or.Listy “,” (Type)

Figure 36: BNFTypesLogic

extent to which SableCC integrates into an OO designedagimn mean SableCC is affective tool for
implementing “little language” elements in a larger softavdesign.

When run on thélypesBNF, SableCC produces a parser for converting metainfoomayping strings
into automatically generated abstract syntax tree objétgvever, the existing logic tree hierarchy,outlined
in the previous chapter, is logic language independent arsdigerior to a SableCC generated tree. Further,
the resolver is designed to operate specifically on the memergl tree hierarchy.

This does not presentfilculties, though, since a simple SableCC visitor walker meawitten to directly
map SableCC trees into custom desigiigpedogic trees. Note, the resolver might have been implemented
to operate with the automatically generated SableCC trestsad. This would have just meant finalising the
Typesanguage and generating the SableCC abstract syntax &éme implementing the resolver architec-
ture. The resolver code could then have been implementadptog the SableCC generated classes.

Although possible, this approach is not a good design forreasons. The first being that it is fragile
to changes in th@ypeslogic specification. So, if the structure of type informatistrings is changed for
whatever reason, there are potentially nontrivial knocgleanges required in the resolver architecture. For
this reason, using a mapping tree walker to produce logéstimm SableCC trees is a gain, in that it isolates
the resolver structures from syntactic changes in the sge of type strings.

The second, and more important, reason is designing thivee$o use the SableCC tree means limiting
it to the Typeslanguage only. The resolver is a valuable software devedopriool within WebCom and
should not be restricted to just a single application.

Although the implementation chosen requires a mappindovisiass and incurs overhead on parsing
operations, this is also a necessary and justified cost. fioeiat of actual parsing and mapping necessary

95

6.2 Runtime Type Checking Problem

may be limited by caching and reusing previously processgit Istructures. Nevertheless, the parsing is
already quite flicient and need not be an optimisation focus.

Detailed examination of the generated parser and of thegetkabstract syntax tree, in particular, is un-
enlightening. Especially, since these components areseat autside of their parsing application. However,
the handcoded tree walker mapping SableCC treesTypedogic trees deserves some mention. This visitor
class,TermParser, extends the automatically generated depth first visitaptat, DepthFirstAdapter.
Consequently, this operationTypedogic parser particular, but may be adapted easily for déreguages.

TermParser Visits the SableCC tree elements which correspond diréztipnstant, Variable, And,

Or, andNot types inTypeslogic trees, and generates an approprigieeslogic tree element in each case.
If mapped elements are constructed on the postvisit sideepthdfirst node visiting, then any necessary
referenced types will already have been created. So, ftarios, in generating &r element, the argument
type objects needed will have already been generated biopsesieeper walk visits.

It is also convenient to implement a facasterse method in theTermParser class. This method takes
a type string input and produces a correspondiygeslogic element, if possible. This method arranges
the necessary SableCC lex and parse calls, then invokéti®arser walker on the resultant object to
generate the desirddypedogic object.

6.2 Runtime Type Checking Problem

The basic approach to Condensed Graph type checking hasalbeen mentioned. The idea being to
associate types to operator inputs and outputs, and to/\aritput types are subtypes of types at operator
inputs to which they are connected. This typing informatsstored in operataInfo objects and is parsed
into Typedogic tree elements by the above parser tool.

§69 Basic Runtime Type Checking. <Issues in type checking Condensed Graph at runtime witraiahles-
There are two primary type checking scenarios, runtimdigation and beforetime verification. Beforetime
verification will be considered below, so for now type checkis assumed to run at Condensed Graph
execution time. Upon realisation of a full computationgbler, or fireable node, in the WebCom engine,
the type safety of the generated instruction might be vellifiythis case, all actual operands and types are
available, and this scenario involves just checking subtgations for each operand, i.e., checking that the
actual operand class type is a subtype of the required glpss t

This kind of immediate type verification is common in intexfad execution. Implementing this within
the proposed WebCom type checker is ndiiclilt, and would increase graph execution confidence.

It helps to first consider the variable free implementatiase; the case where no type strings use variables.
This simplifies operand class type verification considgra®hecker rules include:

e For constant operand types, the checker verifies the agieednd is a subtype of the required constant.

96

6.2 Runtime Type Checking Problem

¢ In the case a Not function type is required, the checker etdithe Not argument type and compares
the actual operand class to that type. The check fails if pregand class satisfies this subtype relation.

¢ If the required type is an And type, then the checker cheak®fferand type against each of the And
type arguments, fails the test if the operand fails agaimpagument type.

e Similarly, with an Or type, the checker tries the operandraiall of the Or argument types, but just
needs one of the subchecks to succeed.

Note none of this requires use of the resolver, and so mayttméeatly implemented. Further, thB/pes
logic syntactic rules are not used in this simplified decigicocedure, due to the restricted query natures. No
expression rewriting is needed to verify logic queries effiorm Subtype(constant, constant).

This checker routine does noffer the full expressiveness available from variable usegbas provide a
simple dfective check if variables are either not employed or distedinin the case that variables are to be
ignored, they may be substituted with tigject type.

This relaxation of variables to th@bject type will probably mean certain invalidly typed operands ar
passed when they ought to fail. However, this relaxatiodbtpect is not as slack as might be supposed and
much poor typing will still be caught. For instance, suppitserequired type string is:

And(X, java.lang.Integer)

In this case, the realised type in the check is justeger, and the checker will fail anything not dmteger
regardless of the variable typing. In particular, if theighlte does not additionally restrict the type below
Integer, then the checker will function completely correctly ingltiase.

This approach gives a fast simple check, providing readertalt not complete levels of type security.
For practical purposes, this might be adopted as the rurdireeker algorithm of choice in a WebCom system
especially if designtime verification is also employed.

§70 Variables and Runtime Type Checking. <«Variable use semantics. Runtime checker implementatitmvariables-
Variables used in type strings may match against any pemiytoe in the logic, in line with FOPL variables
use. This is implemented by using the resolver to organiselitiect verification of types, including the case
of variables. A type check involves invoking a simple Suletyjuery, to check an actual operand classname
constant is included in the required operand type. Thevestdkes care of any variable binding necessary.

Itis even possible to disregard many logic rewrite rules@perate with a sublogic dfypes so improving
resolver #iciency considerably. In particular, logic rules involviogmposite element rewrites on the left of
Subtype predicates are superfluous. As are some rules ingakwrites on right of predicates.

The runtime check in the presence of variables might be imeiged entirely without recourse to the
resolver, but is considerably complicated requiremenfimtbcorrect variable substitutions. This is especially
problematic if the same variable many times in the target typ under a Not negation function. The need

97

6.2 Runtime Type Checking Problem

for the resolver, or for some clever unification, may be seeaxamples such as:
Subtypefava.lang.Integer, Or(Not(X), And(X, java.lang.Numeric))

Matching against the left Or argument means bindihg> Not(java.lang.Integer), and one possible
correct matching on the right would binfl— java.lang.Integer. The problem is incorporating binding
value selection into the checker in the absence of a resaivecation. This example is manageable, but
consider multiple Not symbols in the left argument, and egs$h a complicated structure, and with more
than one variable. Determining the correct variable bigsicould be very diicult in such cases.

The above example is also interesting since the two bindhwgces are mutually incompatible. The
choice does not matter in direct verifications of operandsire targets taken pairwise, since all that is
required is some instantiation making the statement trhe.particular binding is not of much interest.

This is not a complete reflection of the variable type cheglproblem, though. Simple point to point
verification is stficient in the absence of variables, but there is more to censiith variables. Specifically,
variable binding scope extends beyond simple queries amibt®e considered operandwise alone.

Variables are bound on a per node basis. So, if an operandmrtawde position mentions a variable, that
same instantiation is visible to all operand and outputtfmss of that node. This means that if a variable is
bound during an operand verification say, and if this vadabhlso mentioned at aftkrent type verification
on the same node, then the previous variable binding musdpected.

So, numerous type verifications are made with shared vasablverifying node typing. Operation type
verification begins with a blank variable bindings list an#lds each operand verification in turn. The first
operand type is verified or refuted using the resolver. Nofyllause of the resolver may give multiple
satisfying bindings, as in the earlier example, and eacheséd bindings is a possible initial mapping from
which to check the second operand. Further, verifying syleset operands presents even more alternatives.

Verification of the second operand is done in the context effitist operand verification results. Simply
applying the first result substitutions to the second opetarget type might be too narrow, since the second
verification may only be successful with looser variabledivig than required in the first operand verification.

A solution is to verify the second operand directly, with@ansidering the first operand verification
substitution. If the second operand verification returnard@ate substitution then this is reconciled with
the first operand substitution if possible. This recontidia action is described in detail below, but can be
interpreted as ensuring the substitutions may be combitidw introducing inconsistencies.

If the substitutions can be reconciled, then the secondamleverification is accepted and the the third
operand may be considered, etc. Note, that the second apeesfication might produce many candidate
substitutions, which, if successfully reconciled, forra #iternatives for the third operand verification.

This gives rise to an explicit search procedure, and it majditer to instead use the resolver implicit
search itself. In this case, the conjunction of operand armplud subtype checks for a single operation would
form a composite query for resolver verification. This agmtoeliminates the need to reconcile substitutions,
but represents a potentially venyfiitult resolution.

98

6.3 Designtime Type Checking

For purposes of runtime verification, resolver use is paénttoo computationally expensive. Neither
are search operations during graph executions justifiataséa) with verification result caching. A nonvariable
checker withobjects for variables may be the most practical option for runtiregfication.

If practicality is not a consideration, the composite quegsgroach is a straightforward solution algorithm.
However, there are two morals here. The first being that thelver presentsficiency dificulties which
may be too costly at runtime. The best hope may be for pradliesigntime verification, where typing
information may be retained for use in runtime checks. Al¢ively, designtime checks might be digitally
signed, and the graph thereafter used with confidence atrreint

The second moral is in operand type checking processing @stitution reconciliation. This clumsy
process illustrates how the more complicated designtiméaation problem will be at least as complicated.

6.3 Designtime Type Checking

The second type checker scenario is before runtime, or wkésig, static type checking, typically employed
in graph design or automatic construction tools. The idéa\@rify an entire graph, rather than just a single
operation. This involves considering graph node intereations, which is not terribly dicult but does
require a level of computationaffert beyond that in runtime type checking.

In fact, designtime type checking is not todtdrent from runtime checking. The mairfiéirences being
that designtime checking involves a series of checks of dinm fperformed in runtime type checking, and
also that input types are no longer as simple. This is becearsplicated type strings may propagate from
outputs to next inputs without acquiring a concrete actyze s in the case of runtime verification.

§71 Variable-free Designtime Type Checking. <Designtime type checking considered without the problevaébles-
Designtime checking will first be considered without tyméngt variables. This is not as great a simplification
as in the runtime checking case, since output strings nedubras straightforward. And because output string
are fed forward to next inputs, deciding subtype inclusiboperand inputs is not as easy.

The basic problem outline begins with a DAG, This graph is intended to represent the Condensed
Graph to be verified, but reinterpreted in operand flow teratker than in regular Condensed Graph arc
semantics terms. The grafhpossesses a node for each Condensed Graph node, and amanodtee; to
e if the output of the Condensed Graph node correspondireg i® directed to an input of the Condensed
Graph node corresponding ¢e.2 Arcs are assigned directions from output ports to inputgort

Each directed arc d& is assigned the Subtygg/peslogic predicate to be tested on that arc. SX i
the output type of node; and if Y is the input type of the operand on nogleto whiche; is connected, then
the logic predicate statement Subty}{eX) is associated to the arc froeq to e;.

It helps to relabel logic variables to enforce the varialdepe rules described earlier. To do this, each
graph node is processed in turn. At each node, the variabkberight handplaces of subtype logic predi-
cates on incident in arcs are relabeled, as are the varigilesleft handplaces of subtype logic predicates

99

6.3 Designtime Type Checking

on incident out arcs. The relabeling used does not matteg, that labels are globally unique on a per node
basis, perhaps via the use of specific node prefixs to varidéitgifiers?

The problem in designtime checking is to find a variable ims&ion making all subtype predicates true
simultaneously. Of course, this could be verified by thelkesdn a manner akin to the large composite query
option proposed earlier. But, the question arises as tohehé¢there might be a mordfeient approach.

So, given that type strings are assumed variable free, th@atential to adapt the variable free runtime
algorithm to designtime verification. The hope is a diredtyige verification procedure may be developed
such that a complete graph verification amounts to the iterapplication of this procedure to all arcs.

This may be the case, but an approach along the lines of th@psesubterm decomposition technique
runs into problems. The approach which closest mirrors teeipus dfort is to decompose the right subterm
of test Subtype predicates into constant terms. This maybe th the same fashion as in runtime checking,
so it may be assumed that all test right subterms are cosstant

At this point, the subtype predicate may be reversed, sint¢yBel, c) is the same check as c c, or
asc’ c X/, by set complementation. So, potentially composites teay be transfered to the right subterm
place, leaving tests of the form Subtype(MptK). Here, theX subterm may be decomposed as before,
leaving tests like Subtype(Na@)(d). These, however, may befficult to check. Although, not impossible,
these may require large indices in order to verify. For insta to determine Subtype(No)(d), itis necessary
to know if the types represented by classname constaartsld intersect. However, this means, for instance
if d is an interface, that all subtypesoheed to be examined to determine if they implement the iated.

If this test problem can be overcome, this mechanism mighsked as a loose designtime check mirroring
loose runtime checks. As in the runtime case, variables neayeplaced byobject type to get closer
verification. This may be a mordfient approach than the strict checking described below.

Note the test problem identified above is not insurmountaditee indexing an entire JVM classname
space is practical and routinely done in Java IDE tools,stance. There is a one-time index construction
penalty, and care is needed in datastructure choice, betvaitte this forms a very realistic optién.

§72 Variable Designtime Type Checking. <Considerations of the full type checking problem at degiget

Including variable type expressions does not change thielgrodefinition given earlier. The statements
defining the type checking designtime problem in terms oplgsaand logic expression populated arcs still
applies. Furthermore, the full designtime type validapooblem may still be solved by invoking the resolver
on a large composite query consisting of all the properlysdosubtype expressions conjoined.

Variable binding problems still complicate the task of diery a full designtime check algorithm without
toplevel recourse to the resolver. Resolver use is unabl@daf course, in order to validate direct arc checks
since logic language rewrites may be required. So, rathergbal is to minimize resolver use and localise
resolver application to single arc problems. However, tthiss into dificulty with variable reconciliation.

The idea is to check each graph node in turn, verifying ogetgpes with preceding output types. How-
ever, this verification must be done in the presence of viriainding concerns. So, all candidate resolutions
for the operand types must be reconciled before a resolaotanbe accepted as a valid candidate.

100

6.3 Designtime Type Checking

Operand types are validated in turn at each node and anyeetuesolution substitutions need to be
confirmed against a maintained set of valid substitutiofiect®d in the course of the previous verifications.
The current resolution substitution is either acceptagirest some of the potential global solution substitu-
tions, in which case it is combined with these substitutigkigernatively, the resolution substitution does not
conform to some substitution candidate, in which caseratere resolutions are required to maintain those
substitution candidates, or they must be dropped.

This process isféectively implementing what would be the resolver searchédase of the large toplevel
resolver strategy. As such, search strategy concerns iinggbbnsidered. The use of backtracking and the
maintenance of search structures is also a problem in thgrdefthis algorithm.

§73 Statement of designtime type checking algorithm. <Description of the potential algorithm operatien

For clarity, it may be better to simply state the algorithneigtion, rather than try to talk around it. The algo-
rithm for beforetime type checking verification begins wétlCondensed Graph to verify. For convenience,
it is assumed all type strings have been extracted and tethbecording to scope rules. This can be done
by processing each node in turn, determining the operateactt node® and instantiation the associated
Info. Type strings may be extracted from thisfo and variables relabeled to be globally unique. Type
strings must then be stored in accessible form for laterdppkerhaps by hashing based on parent node and
operand index. These type strings may also be presumed éddeawn parsed infbypedogic objects.

The main algorithm body consists of processing each gragk moturn, and it may be better to process
nodes in a breath first order, so as to maintain locality intype checking. This local reference is useful in
eliminating substitution alternatives invalidated in tiear neighbourhood of their construction.

It is also necessary to maintain a database of valid possiigions, together with tree walk position
state, for algorithm purposes. In this way, the algorithny mlgo journal various backtrackings and so forth
which the resolver would otherwise have managed in a lajgevsel subtype check. This database is initially
populated with an empty substitution and an initial statekea

At each node, the algorithm verifies typing data for eachapeim turn. For a single operand verification,
the operand type and the preceding output type are extr&cedthe storage. At this point, the resolver is
invoked to verify the previous output type is a subtype of therent operand type. The resolution will
result in a set of substitutions making the statement trireceXall of these resolution substitutions might be
considered, the resolver must run to completion on the Téss.is unfortunate from anfiéciency viewpoint.

Each candidate resolution substitutions must be vetteddosistency with each substitution in the set
of substitutions maintained by the algorithm. This vettinghe reconciliation step mentioned earlier and
will be discussed more in the next section. The purpose ofgbenciliation step is to establish whether the
current candidate resolution substitution may be combiviiua particular substitution from the set held by
the algorithm. If it can, then this give rises to a new substin in the algorithm list.

More precisely, the resolver returns potential substingj and the algorithm maintains currently valid
substitutions. Resolver substitutions are pairwise reibe with algorithm substitutions, and successful
reconciliations form the algorithm substitutions for threxnstep. Verification fails if this set becomes empty.

101

6.4 Substitution Reconciliation

This list of substitution possibilities also tracks the ktaacking which would be managed by the resolver
in the large query case. There are opportunities for cleaektpacking in this explicit search organisation,
and for other optimisations not possible in the resolventsmh. Moreover, running resolution to completion
at each operand verification may not be necessary, sinceedrehrsmay move deeper in the search tree
without waiting for all operand resolution possibilities.

6.4 Substitution Reconciliation

Substitution reconciliation is the process of examining substitutions to determine compatibility. Com-
patible substitutions are then merged. For the discusgo® ssume the substitutions to reconcilefaaed
¢. LetX = varsf) U varsg) denote the variables mentioned in these substitutiortsaarbeforel denotes
the Typeslogic term space, i.e., the model for the logic elements Wwiniay be referenced, or the space of
objects for which aypedogic variable may stand. So, logic variables may be viewgefiiactions intor .

This setup views substitutions as functions frerms T*. There is a subset &f consisting of variables in
the substitutio which are bound to new values. In the function correspontiigdenoteds, the elements
of this set are mapped to the corresponding elemenismthe substitution expression. The other elements
of X should be mapped to an element representing the whdlewhich for simplicity may be the element
corresponding t@bject.” A similiar construction is used to foriy.

Now, given these two substitution functiort, ¢ : £ — T*, defined; n ¢; is componentwise as
0t N () = 0¢(S) N ¢¢(9). This represents the substitution which is the less s&fatement of botl® andg,
i.e., the infimum in the set inclusion based lattice for sitbson functionsds, ¢ : = — T,

Reconciliation means computirg U ¢+ and failing if any component of this function has an empty set
value. This corresponds to the case where the substitudi@nsot compatible. If successful, reconciliation
returns th&s N ¢ function as a substitution to the caller. The reconciliatidd and¢ is done as follows:

¢ All the variable name and binding pairs frafrare inserted in a queu®. These variable-binding pairs
are processed in turn, ending up in a new substitutipmitialised to contain the bindings i

e On processing a variable-binding pair frady if the variable is not already im as a variable-binding,
it is inserted by substitution composition and the nextalalg-binding pair fronQ considered.

e On the other hand, if the variable-binding already appearg,ithen the two substitutions must be
combined. Suppose — T is already inu and the current variable-binding&— T’. HereT andT’
may have any instantiations, but tBevariable must stand for itself, of course. The correct navdinig
should beS — And(T, T’). However, it must be determined that this new binding isemopty before
accepting the reconciliation. This check might be doneirfstance, by the resolver in querying for an
X value for SubtypeX, And(T, T’)). It may otherwise be checking by examinifigandT’.

e This process continues until either a failure is isolate@drecomes empty. In this latter case, the
substitution is returned as the result of the reconcilratio

102

6.5 Type Checker Modules

6.5 Type Checker Modules

These reconciliation and verification algorithms need t@akeeled in a form suitable for incorporation in
WebCom. This packaging is in the form of modules supportirgMarious type checking scenarios.

Separating runtime from beforetime checking into sepamaeules is a convenience. So, to enable
runtime checking, the runtime checker module would be Idaated informed if strict or loose verification
was desired. In the case of beforetime checking, the béfoeathecker could be loaded instead. This would
include additional functionality to support the augmeiotabf graphs with verified typing information.

Both modules would use essentially similar operations. flimime version being a microcosm of the
beforetime problem as already discussed. So, while the la@lgorithm implementations would share a
number of features, their invocation hooks and modulefaterforms would be quite distinct, runtime being
effectively invisible, beforetime requiring explicit invatian.

The two modules ought to be similar in configuration. Bothnsc®ss above discussed the striped down
and more #icient verification at the cost of accuracy, and the implem@mbodules ought to allow the site
administrator or graph designer flexibility as to whethecsbr loose verification is desired.

The runtime checker can be invisible to the user by using tleEAPI. So, all an administrator or user
would have to do to enable runtime checking is to load thementhecker module. This module would then
employ the Event API to spy on graph execution and node ptamud/Nhen a node is completed, or perhaps
just before ainstruction is executed, the runtime checker could invoke a check ondhble or operation.
This monitoring is easy to arranged using the Event API amlagdhsses and amounts to just a few lines in an
adaptor extension and a line in the module load method ezxgigtthe listener.

The beforetime checker requires more explicit invocatthre to use pattern. The perceived usage is in
IDE graph design. The designer may periodically run a lo¢wek during graph construction. This quick
check might then verify typing information over the complgportions of the graphThe checker algorithm
might also return information relevant to typing failuree,as to help isolate areas of poor typing.

When satisfied with a graph, the designer may then invoke a timeeonsuming full verification. The
intention here is that this check be used to provide preeatitin for the runtime execution. So, the IDE might
verify a graph and if successful provide a cryptographichhadicating successful verification. The runtime
environment might demand the production of such a tokenrbefgreeing to run the graph. Of course, this
outline is vulnerable to deliberately malicious signingee a tool may be used to produce verified tokens
for graphs irregardless of whether type verification sudede

The type checking algorithms also have applications in dging WebCom code. They may be used to
check initially for ill typing, or used in conjunction withtaace replayer to examine typing in a failed run.

Both modules requir@nfo object and parsed type string cacAeSince this is common functionality, it
might implemented in a common parent class, or in a modula wioch both checkers depend.

In all, the module harness designed in previous chaptevéda®very adequate support for implementing
type checking concerns, and illustrates the Module API fietteWebCom developers. In the case of type
checking implementation, mosffert was spent on designing algorithms rather than on Web@uegiiation.

103

6.6 Finally. ..

For this reason, the work to the end of the previous chapteichwmay be assumed to exist in any future
development WebCom work, forms a base upon which to builticaijons and extend WebCom.

6.6 Finally...

§74 Further Work. <Improvements, necessary and desired
Some of the many areas where this type checker outline maimproved will be mentioned briefly here.
There are also some suggestions as to future work, in adddioork suggestions already commented on.

The checker algorithms, especially the full verificatiogalthms deserve further refinement. Central is
the determination offéciency in programming the entire verification as a singledggogram. More #&ort
is also needed in improving the suggested search strategigscially to handle better backtracking.

The full specification of classnames in fhgoedogic is cumbersome. Type string namespace conventions
might be implemented, including support for import statateén Info objects.

A system for dealing with functional dependencies in tygengtspecifications should be developed,
especially in the case where output types depend funchjooalactual operand types. Take the addition
operation, for example. The output types should be tightjyressed in terms of the widest input type, but
there is no immediate method to express this in the currgit.IoThere are approaches involving variable
bindings which approximate the desireffleet, but the logic should have notation to express conditign
better. Even an implication statement within the logic vabsllffice.

Since variable resolution introduces serious time pesgltestablishing when variables are required
would be very beneficial. Determining cases suitable foratde elimination is naturally heuristic in na-
ture, at best, but the potential gains warrant an expered@figfort in this direction.

Finally, there are problems with dynamic destinations apdrations in type checking. The current
checker approach requires static destinations to a largee€le With the use of dynamic operations more
likely in future, there are concerns about the whether tHerbme checker routines can manage this dy-
namism. At very leastinfo objects might be extended to express the dynamic posbilit

§75 Concluding Remarks. <A reminder of where this dissertation has been

Before concluding this discussion, it is worth recappingloavarious applications and software developed
during the course of this document. The list of developméotas an eclectic list, mostly falling under the
theme of supporting the future software development witkigbCom.

Toward improving WebCom developer support, metadata iootatwere introduced to specify details
relating to internal datastructures without needing tonagigt these actual structures.

Aspect Oriented Programming was introduced in the guisé@fEvent API in order to provide third
parties with event information from the WebCom core with nadification to internal WebCom structures.
This event implementation was particularly designed wittciency in mind and forms the bedrock of the
runtime type checker application. Wider AOP facilities beg those in the Event API are also available.

104

Chapter Notes

Much work was done on the Module API, especially in reformting view of WebCom modules to fall
in line with a completely-plugin architecture. This phibgy shift is probably the most potentially useful
aspect of this work. A completely plugin view may be used tgfénce the fragile WebCom core.

Another major addition to the WebCom developer toolkit wias tesolver and introduction of logic
programming. The utility of logic oriented programming wksstrated in the type checker design, which
might have be implemented immediately as a schema for pioglimgic programs for resolution.

Aside from design work, some useful applications have bessldped. Included primarily to illus-
trate the particular features, they also form a useful cttde of WebCom support software. Applications
have included the J2ME submission tool, and the generic \Webl@unch tool, both of which build on the
Submission API. The automated documentation tools alserdgal on the Information Framework.

There has been the execution trace application built on YeatAPI and incorporated in the trace mod-
ule. This complements the other modules developed as pare@ysTray application providing a desktop
based WebCom system. These include the statistics, IDgdriBeanShell and other GUI modules.

The logic resolver is key to type checking, but is also of ussupporting potential security rule rewrites
and other problems. In conjunction with logic, the SableGDeagated parser ought to be mentioned, in
particular because itfectively combines the Information Framework with the logiol.

Finally, there is the type checking application itself, efhialthough the nominal goal of this project,
actually formed more of a convenient endpoint for the dgwelent journey. It is perhaps best to end by
hoping these new frameworks, designs and API will serve thegnded purpose of improving the capacity
for third parties to implement interesting new WebCom fiozlity.

Chapter Notes

11Info objects and type string logic structures will typically keebed, so parse per operationfii@encies are not always incurred.
2n fact, the productions are suboptimal. For instance, thiabte line of the alternatives could be written as just:

‘VAR’ (Variable NameString)

That is, without the parentheses symbols, since the pasggheould be parsed by the first production alternative dvttiey are not
explicitly required. Of course, then the parentheses wbaldptional and the function notation not required.

SNote that this definition restricts the applicability of tiype checking algorithms to those graphs for which thesdldatpaths can
be established. And specifically, there is no reason whytgraich involve dynamic destinations should be verifiablthis system.

4In the case of a Java implementation, this relabeling might eyriple object memory reference, for instance. Of course, this
definition is for description purposes and isn't suitablegdava implementation, anyways.

5There would be problems with exchanging classes between Web@stances, though. The type checker would need to kaibw
the classes that may be required in the verification, whetheotthey are present in the local JVM.

5The operators cannot be dynamic in this case, or if they agayfie must be easy to determine.

"This is slightly deceptive in thaibject might appear legitimately as a substitution value, and it esireable to confuse these
entities. However, for practical purposes this approadhwairk.

8This is how it might work in the IDE case if building a Condengaph in piecemeal fashion.

9parsed type strings can be reused also if revariablised.

105

Appendix A —NodeInfo Example

This appendix contains the promised exanNaléeInfo source code from Chapter 2, describingpdeInfo
for an addition operation taking two numeric parameters.

package webcomnodescore

import webcomcgengineStrictness
import webcomgraphinfoNodelnfg

/‘k*
* Graphinfo for Addition Node
*/ 10
public class AdditionNodelnfo extends Nodelnfo
{
o
* Get the name of this node
*
* @return the name.
*/
public String getNam@
{ return "Addition Node";

} 20
/k*

* Get the graph name this graph info specifies.

*

* @return the name of the graph to execute.

*

/

public String getNodeNan(e
{ return "webcom.nodes.core.AdditionNode"; /SNON-NLS-1$
} 30

106

Appendix A — NodeInfo Example

/**
* Accessor for string node description
*
* @return the stored node description string.
*/
public String getDescriptiof)
{ return "Add the operands.";
} 40

/k*
* Get the number of arguments that are specified in this gragb.i
* @return the number of arguments the condensed graph reguir
*/
public int getNumArgumeni3
{ return 2;
} 50

/‘k*
* Return the type of the i-th argument(index origin zero).
*

* @param i the index of the argument to query type of. Ignored
* @return one of Argument type values

*/

public String getArgTypéinal int i)

{ return "OR(java.lang.Byte, java.lang.Short, " + /SNON-NLS-1$ 60
"java.lang.Integer, java.lang.lLong, java.lang.Float, " + /SNON-NLS-1$
"java.lang.Double)"; /SNON-NLS-1$

}

/‘k*

* Return the description of the i-th argument(index origiera@).

*

* @param i the index of the argument to query description of

* @return String describing i-th argument 70
*/

public String getArgDescriptioffinal int i)

{ return "A summand";

}

/‘k*

107

Appendix A — NodeInfo Example

* Return the strictness of the i-th argument(index origimoze

*
* @param i the index of the argument to query type of
* @return strictness of the i-th argument.
*
/
public Strictness getArgStrictnegdmal int i)
{ return StrictnessSTRICT,
}

/‘k*

* Get the number of outputs that are specified in this graplo.inf

*

* @return the number of outputs in the condensed graph.
*/

public int getNumOutput§

{ return 1;

}

/‘k*
* Return the type of the i-th output(index origin zero).
* @param i the index of the output to query type of. Ignored
* @return output type string
*/
public String getOutputTyp@nal int i)

{ return "OR(java.lang.Byte, java.lang.Short, " + /SNON-NLS-1$
"java.lang.Integer, java.lang.lLong, java.lang.Float, " + /SNON-NLS-1$

"java.lang.Double)"; /SNON-NLS-1$

/‘k*

* Return the description of the i-th output(index origin @er
*

* @param i the index of the output to query description of
* @return String describing i-th output

*
/

public String getOutputDescriptigfinal int i)

{ return "Result of Addition";

}

108

80

90

100

110

120

Appendix B — Event Trace

This appendix contains a full listing for the operation o tvent trace Event API application on the odd
parity test graph, depicted in Figure 37 below.

& Py &
& &> >

Figure 37: Odd parity testing graph.

The detailed output from the event trace module on invoking parity test graph within WebCom is
included below. The events leading up to and includingetigineRun event essentially track the WebCom
bootstrap. Graphs are bootstrapped in WebCom by first making level condensed node with the graph to
execute as a dynamic operator. This top level node is paalilaith the desired operands and pushed onto
the WebCom execution queues. This will cause the node tofmnebed and the desired graph to be allocated
and executed. By the time thegineRun event occurs below, the actual graph is ready to start rgnnin

The E node of this graph is then queued and subsequently tandtisn for its operation is constructed.
This instruction is then executed in the engine module, Xeewion of which prompts the graph allocation.

Next is the node containing the Even operator. This is queaiedntaining instruction made and sent to
the scheduler for scheduling. The instruction is then finpissed to the load balancer for queueing. The
node’s instruction ends up being passed back to the engidelmior execution.

The case of the NOT node is handled similarly. However, theodlenis executed directly at the engine
module without being passed to the scheduler, etc. The tperaf the X node prompts the graph deal-
location. The RGEXxitNode plays a role in the implementatidérihe X node operations and follows the
ExitNode.

Back at the top level, the backplane receives a messagenimigiit of the result, which it can pass to the
user tool used to invoke the WebCom instance, i.e., the ID&dommandline tool, etc.

The full trace of events is included overleaf.

109

Appendix B — Event Trace

newInstructionInWebCom :-

webcom. core.Instruction@le6e305
operation main

instructionReceived :-

webcom. core.Instruction@le6e305
operation main

engineQueueNode :-

webcom. cgengine.Node@45e228

uid -4818b48d:1035bcff0d4:-7fac
short_name main

cg_container null
newInstructionInEngineModule :-
webcom. core.Instruction@b249
operation main
schedulerScheduleInstruction :-
webcom. core.Instruction@2b249
operation main
loadBalancerQueueInstruction :-
webcom. core.Instruction@2b249
operation main
instructionExecutionInEngineModule :-
webcom. core.Instruction@2b249
operation main
instructionExecutionInEngineModule :-
webcom. core.Instruction@le6e305
operation main

backplaneSentMessage :-

EngineMessage: source = agador/143.239.211.35 module value: top level,
destination = agador/143.239.211.35 module value: engine,type = INSTRUCTION,
data = webcom.core.Instruction@le6e305

engineQueueNode :-

webcom. cgengine.Node@163956

uid -4818b48d:1035bcff0d4:-7faa
short_name webcom.cgengine.EnterOp
cg_container main
newInstructionInEngineModule :-
webcom. core.Instruction@10e434d
operation webcom.cgengine.EnterOp
instructionExecutionInEngineModule :-
webcom. core.Instruction@10e434d
operation webcom.cgengine.EnterOp

engineAllocatedGraph :-

110

Appendix B — Event Trace

webcom. cgengine.DynamicCG@789869
uid -4818b48d:1035bcff0d4:-7fac
full_name main(-4818b48d:1035bcff0d4:-7fac)
name null

engineQueueNode :-

webcom. cgengine.Node@c®63ad

uid -4818b48d:1035bcff0d4:-7fa8
short_name webcom.nodes.core.EvenOp
cg_container main
newInstructionInEngineModule :-
webcom. core.Instruction@9abc69
operation webcom.nodes.core.EvenOp
schedulerScheduleInstruction :-
webcom. core.Instruction@9abc69
operation webcom.nodes.core.EvenOp
loadBalancerQueueInstruction :-
webcom. core.Instruction@9abc69
operation webcom.nodes.core.EvenOp
instructionExecutionInEngineModule :-
webcom. core.Instruction@9abc69
operation webcom.nodes.core.EvenOp
engineQueueNode :-

webcom. cgengine.Node@78dc4c

uid -4818b48d:1035bcff0d4:-7fa7
short_name webcom.nodes.core.NOTOp
cg_container main
newInstructionInEngineModule :-
webcom. core.Instruction@c70b0d
operation webcom.nodes.core.NOTOp
schedulerScheduleInstruction :-
webcom. core.Instruction@c70b0d
operation webcom.nodes.core.NOTOp
loadBalancerQueueInstruction :-
webcom. core.Instruction@c70b0d
operation webcom.nodes.core.NOTOp
instructionExecutionInEngineModule :-
webcom. core.Instruction@c70b0d
operation webcom.nodes.core.NOTOp
engineQueueNode :-

webcom. cgengine.Node@bef361

uid -4818b48d:1035bcff0d4:-7fa9
short_name webcom.cgengine.ExitOp
cg_container main

newInstructionInEngineModule :-

111

Appendix B — Event Trace

webcom. core.Instruction@5c98£3

operation webcom.cgengine.ExitOp
instructionExecutionInEngineModule :-

webcom. core.Instruction@5c98£3

operation webcom.cgengine.ExitOp

engineDeallocatedGraph :-

webcom. cgengine.DynamicCG@789869

uid -4818b48d:1035bcff0d4:-7fac

full_name main(-4818b48d:1035bcff®d4:-7fac)

name null

engineQueueNode :-

webcom. core.enginemodule.RGExitNode@15e293a

uid -4818b48d:1035bcff0d4:-7fab

short_name RGOperator

cg_container null

newInstructionInEngineModule :-

webcom. core.Instruction@1d840cd

operation RGOperator

instructionExecutionInEngineModule :-

webcom. core.Instruction@1d840cd

operation RGOperator

engineSendResult :-

webcom. core.Result@2£8116

source_ref null

data true

execution_time O

resultee null

backplaneSentMessage :-

EngineMessage: source = agador/143.239.211.35 module value: engine,
destination = agador/143.239.211.35 module value: top level,type = RESULT,
data = webcom.core.Result@£8116

engineResultSent :-

webcom.core.Result@2£8116

source_ref webcom.cgengine.Node@1f1680f

data true

execution_time 94

resultee webcom.ide.AnywareIDE[frame0,0,0,1920x1170,invalid,
layout=java.awt.BorderLayout, title=WebCom-G IDE,resizable,normal,
defaultCloseOperation=DO_NOTHING_ON_CLOSE,
rootPane=javax.swing.JRootPane[,4,36,1912x1130,invalid,
layout=javax.swing.JRootPane$RootLayout,alignmentX=0.0,alignmentY¥=0.0,border=,
flags=16777673 ,maximumSize=,minimumSize=,preferredSize=],
rootPaneCheckingEnabled=true]

112

Appendix C — Unification Algorithm

This appendix contains the unification algorithm as useti@résolver outlined in Chapter 5.

Algorithm Unry(l, m)

main

if signs, symbols or number of termsliandm do not agree
then return (failure)

6«0

for eacht subterm of

do

do

return (6)

S « corresponding subterm of

comment: Apply substitution to date over bothands.
V'« 0(t), s «0(9

comment: Iterate the recursion with a goal stack.
stack« {t' = &}

while stack# 0

g <« pop(stack)
u « Lefthand side ofj, v « Righthand side ofj
if uis a variable
then {Apply u — voverd and stack, occurs checking if desired.
60— 60U{u—v
else ifvis a variable
then {Apply v — uoverd and stack, occurs checking if desired.
60— 6uU{v—->u}
else ifv andv agree on function symbol and arity
then stack« stacku {v; = u;j}j wherev; andu; are the subterms afandv.
else return (failure)

113

Appendix D —TypesLogic Grammar

This appendix contains the SableCC grammar fofMyeedogic parser.

Package webcom.typechecker.parser;

Helpers
1f = 0x000a;
cr = 0x000d;
tab = 0x0009;
printable = [32 .. 127];
letter = [’a’ .. 'z’] | [’A’ .. ’Z’];
digit = [’0" .. ’9’];
dot = ’.7;
Tokens

var_token = 'VAR’;
or_token = 'OR’;

and_token = ’AND’;
not_token = 'NOT’;
open_token = ’(’;

close_token = ’)’;

string_token = letter (letter | digit | dot)¥*;
blank = (cr | 1f | tab | ’ ’)+;

comma_token = ’,’;

Ignored Tokens
blank;

114

Appendix D — Types Logic Grammar

Productions
type =
{parenthesis} open_token type close_token |
{constant} string_token |
{variable} var_token open_token string_token close_token |
{not} not_token open_token type close_token |
{and} and_token open_token and_list close_token |

{or} or_token open_token or_list close_token;

and_list =
{single} type |
{multiple} and_list comma_token type;

or_list =
{single} type |
{multiple} or_list comma_token type;

115

[FMQO04]

[FQO2]

[FQM*00]

[FQMO2]

[FQO"04]

[GHJIVI3]

[GHIV95]

[JPMPO4]

[Ken04]

mMC]

[MKPa]

[MKPb]

IMKPc]

[MKPd]

Bibliography

Simon N. Foley, Barry P. Mulcahy, and Thomas B. Qudtin Dynamic administrative coalitions with webcom dac. In
WeB2004 The Third Workshop on e-Busin®gashington D.C., USA, December 2004.

Simon N. Foley and Thomas B. Quillinan. Using trust mamagnt to support micropayments. Rroceedings of the
Second Information Technology and Telecommunicationge@amce pages 219-223, Waterford Institute of Technology,
Waterford, Ireland., October 2002. TecNet.

Simon N. Foley, Thomas B. Quillinan, John P. Morrison, laki Power, and James J. Kennedy. Exploiting keynote in
webcom: Architecture neutral glue for trust managementPrisceedings of the Nordic Workshop on Secure IT Systems
Encouraging Co-operatigrReykjavik University, Reykjavik, Iceland, October 2000.

Simon N. Foley, Thomas B. Quillinan, and John P. M@misSecure component distribution using webconmProceeding
of the 17th International Conference on Information SeguiiFIP/SEC 2002)Cairo, Egypt, May 2002.

Simon N. Foley, Thomas B. Quillinan, Maeve O’Connor, BafyMulcahy, and John P. Morrison. A framework for
heterogeneous middleware security.Aroceedings of the 13th International Heterogeneous CaimgWorkshop Santa
Fe, New Mexico, USA., April 2004. IPDPS.

Erich Gamma, Richard Helm, Ralph Johnson, and JolssiMEes. Design patterns: Abstraction and reuse of objéstted
design.Lecture Notes in Computer Scien@®7:406-431, 1993.

E. Gamma, R. Helm, R. Johnson, and J. VlissidBesign Patterns: Elements of Reusable Object-Orientetivaod
Addison-Wesley, 1995.

David A. Power John P. Morrison, Brian Clayton arahssh Patil. Webcom-g: Grid enabled metacomputiffge Journal
of Neural, Parallel and Scientific Computation. Specialkssn Grid Computing2004(12)(2):419-438, April 2004.

James J. Kennedfpesign and Implementation N-Tier Metacomputer with Deedised Fault ToerancePhD thesis, PhD
Thesis, University College Cork, Ireland, May 2004.

John P. Morrison and Ronan Connolly. Facilitating PletaProgramming in PVM using Condensed Graphs. Proceedings
of EuroPVM’99: Universitat Autonoma de Barcelona, Spain226Sept 1999.

John P. Morrison, James J. Kennedy, and David A. Pawvé&rondensed Graphs Engine to Drive Metacomputing. Proceed-
ings of the international conference on parallel and distgd processing techniques and applications (PDPTA 1983,
Vagas, Nevada, June 28 - Julyl, 1999.

John P. Morrison, James J. Kennedy, and David A. Powstending WebCom: A Proposed Framework for Web Based
Distributed Computing. Workshop on Metacomputing SystemsAgglications, ICPP2000.

John P. Morrison, James J. Kennedy, and David A. PowéggbCom: A Volunteer-Based Metacomputer. The Journal of
Supercomputing, Volume 18(1): 47-61, January 2001.

John P. Morrison, James J. Kennedy, and David A. PowgebCom: A Web-Based Distributed Computation Platform.
Proceedings of Distributed computing on the Web, Rostocky@ay, June 21 - 23, 1999.

116

Bibliography

[MOH]

[Mor96]

[(MP]

IMPC]

[MPK]

[MRa]

[MRb]

[QCF04]

[QFO04]

John P. Morrison, Padraig J. O'Dowd, and Philip D. Heabearching rc5 keyspaces with distributed reconfigurhate-
ware. ERSA 2003, Las Vegas, June 23-26, 2003.

John P. MorrisonCondensed Graphs: Unifying Availability-Driven, CoemiBriven and Control-Driven Computing?hD
thesis, Eindhoven, 1996.

John P. Morrison and David A. Power. Master Promotion &6t Redirection in the WebCom System. Proceedings of
the international conference on parallel and distributext@ssing techniques and applications (PDPTA 2000), Laad/a
Nevada, June 26 - 29, 2000.

John P. Morrison, Keith Power, and Neil fBarkey. Cyclone: Cycle Stealing System. Proceedings of ttegriational
conference on parallel and distributed processing teciesi@nd applications (PDPTA 2000), Las Vegas, Nevada, Jine 2
- 29, 2000.

John P. Morrison, David A. Power, and James J. Kennedyad.balancing and fault tolerance in a condensed graphd base
metacomputer. The Journal of Internet Technologies. Spe&xsak on Web Based Computing. Volume 3(4), 221-234,
December 2002.

John P. Morrison and Martin Rem. Managing and ExplgitBpeculative Computations in a Flow Driven, Graph Reduction
Machine. proceedings of PDPTA99: Las Vegas, USA. Juneu2g], 1999.

John P. Morrison and Martin Rem. Speculative Computimthie Condensed Graphs Machine. proceedings of IWPC'99:
University of Aizu, Japan, 21-24 Sept 1999.

Thomas B. Quillinan, Brian C. Clayton, and Simon N.dyol GridAdmin: Decentralising grid administration usingstru
management. liProceedings of the Third International Symposium on Patahd Distributed Computing (ISPDCQ4)
Cork, Ireland, July 2004.

Thomas B. Quillinan and Simon N. Foley. Security in wainc Addressing naming issues for a web services architecture.
In Proceedings of the 2004 ACM Workshop on Secure Web Ser@¢¢S)(Washington D.C., USA., October 2004. ACM
Conference on Computer and Communications Security, ACM. TaeAp

117

