
A Grid Application Development Platform for WebCom-G∗

John P. Morrison, Sunil John, David A. Power, Neil Cafferkey and Adarsh Patil
Centre for Unified Computing,

Dept. Computer Science,
National University of Ireland,

Cork,
Ireland.

{j.morrison, s.john, d.power, n.cafferkey, adarsh}@cs.ucc.ie
http://www.cuc.ucc.ie

Abstract

Grid Computing is becoming more popular. The tra-
ditional role of the Internet as being an information
repository is evolving to become a resource reposi-
tory. People using the Internet will want to do more
than just look for information, they will want to ex-
ploit the resources available. Grid Computing pro-
vides platforms to facilitate such requirements. Var-
ious Grid middlewares have been developed to of-
fer access to vast resources ranging from comput-
ing power to application functionality to specialised
physical resources.

This paper details the programming model used for
heterogeneous environments exploited by WebCom-
G. In addition to describing the tools and method-
ologies used for this computing environment, a brief
outline of WebCom-G (WebCom Grid) and some of
its capabilities is given.

1 Introduction

Grid Computing is evolving to mean the sharing of
geographically distributed resources. The complexity
of various Grid systems is increasing rapidly. This
rate of increase can be seen across all areas of Grid

∗This work is partly funded by Science Foundation Ireland

under the WebCom-G project and the Higher Education Au-

thority under the CosmoGrid project.

Computing, from raw processing power to network-
ing infrastructure to new mechanisms for exploiting
these resources, such as web services. However, Grid
is unpredictable, since required resources may not al-
ways be available. Resource availability, machine het-
erogeneity, software heterogeneity and the highly dy-
namic environment in which Grid Computing resides
all contribute to this unpredictability.

There are a number of Grid middlewares readily
available such as Globus [5], Legion[14], Alchemi[7],
GridBus[3] and Simgrid[4]. To successfully utilise
such systems, developers are required to know system
details ranging from resource configuration to service
availability to hardware configuration. When creat-
ing Grid applications, proper management of the un-
derlying resources has to be adopted. Resource avail-
ability, Fault Tolerance, Load Balancing, Scheduling
all have to be taken into account. These requirements
significantly increase the burden of responsibility on
Grid application developers.

To become widely accepted to those who are not
computing experts, Grid Computing must become
easy to use. In effect the use of Grid technologies
must become hidden from the end user. Various Grid
middlewares give access to resources at different ab-
straction levels. These resources constitute signifi-
cant investments in time and effort by experienced
experts and provide a valuable foundation for the
construction of Grid applications. A challenge is to

FA
U

L
T

 T
O

L
E

R
A

N
C

E

ST
U

B

C
O

M
M

U
N

IC
A

T
IO

N
S

M
A

N
A

G
E

R
M

O
D

U
L

E

ST
U

B
SE

C
U

R
IT

Y
 M

A
N

A
G

E
R

L
O

A
D

 B
A

L
A

N
C

IN
G

/
SC

H
E

D
U

L
IN

G
ST

U
B

G
L

O
B

U
S E

N
G

IN
E

PL
U

G
IN

WebCom Integrating with Grid running Globus

Backplane

Node Node Node

NodeNodeNode

Grid Information service

Grid Security Infrastructure

Gatekeeper

A Node in a Grid Running Globus

Globus Engine Plugin

Creates RSL and
Sends to Gatekeeper

to execute

Figure 1: The WebCom-G architecture containing
modules for Scheduling, Load Balancing, Fault Tol-
erance, Security, Communication and Computation
Engine. Each module plugs into a Backplane.

leverage these resources in a manner consistent with
hiding the detail from the uninitiated user commu-
nity.

As Grid Computing becomes more established, em-
phasis is being placed on the creation of complete
problem solving environments (PSEs) and the pro-
vision of different languages and APIs. These tools
have to be effective in order to cope with dynamically
changing heterogeneous environments.

This paper describes an application development
framework based on the Condensed Graph model of
Computing. A methodology to translate high level
languages and proprietary specification languages to
Condensed Graphs and extension of these method-
ologies for creation of other Condensed Graphs is dis-
cussed. A mechanism for creating Condensed Graphs
from traditional applications is presented in Section
4. The WebCom-G PSE, WebCom-GIDE presented

in Section 5, can be used to manually optimise these
graphs. It can also be used to create new applications
from previously created graphs thus facilitating the
exploitation of the different resources available.

Firstly, Section 2 briefly outlines the main com-
ponents of WebCom-G and Section 3 describes the
job submission mechanism supported by WebCom-
G. Finally, conclusions and future work is presented
in Section 6.

2 WebCom-G - a Grid Middle-

ware

WebCom-G[9, 12, 13] is a fledgling Grid Operating
System. The WebCom-G project is a Grid enabled
version of the WebCom[11] metacomputer. It sep-
arates the application from the execution platform.
This is achieved by providing a multi-layer system
implementation. Each layer has particular respon-
sibilities in achieving task execution. These range
from an application Execution Engine, to layers that
carry out Scheduling, Load Balancing, Fault Toler-
ance and Security. Each layer in this architecture is
implemented as a distinct module within WebCom-
G. Modules are provided for Scheduling, Load Bal-
ancing, Fault Tolerance, Security, Communication
and Computation Engine. These modules form plug-
ins to a core module called the Backplane. The Back-
plane is responsible for bootstrapping particular in-
stances of WebCom-G and also inter module commu-
nication. Different Computation Engine modules are
available for different middlewares including COM,
DCOM, .NET, Corba, EJB, and Globus. Figure
1 illustrates a particular configuration of WebCom-
G that with a Globus Execution Engine plugin in-
stalled. This will execute Globus tasks presented to
WebCom-G as part of a Condensed Graph applica-
tion.

Applications expressed as Condensed Graphs are
not implementation dependent thus the programmer
is free to concentrate on expressing a solution to the
problem rather than on its implementation.

Condensed Graphs [8] represent programs as di-
rected acyclic graphs, in which nodes represent tasks

Globus GridBus Legion

Grid Middlewares

(Condensed Graph)

Applications

WebCom−G

SimGridSunGridEngine

Hardware

Figure 2: Top level view of WebCom-G. Applica-
tions expressed as Condensed Graphs execute on the
WebCom-G platform. WebCom-G can then target
computations to different Grid middlewares.

and arcs represent inter task sequencing constraints.
In addition, the semantics of Condensed Graphs ex-
press data-driven, demand-driven and control-driven
computations using a single, uniform, formalism.
Tasks can range in complexity from simple instruc-
tions to invocation of services offered by various mid-
dlewares. By representing Condensed Graphs as
nodes in other graphs, arbitrarily complex and ab-
stract applications can be developed. Representing a
graph as a single node with a defined set of inputs is
equivalent to the provision of a standalone service.

WebCom-G contains a mechanism for targeting
nodes of a Condensed Graph, i.e. tasks, to specific
execution domains. Combining support for executing
native applications and targeting mechanisms facili-
tated the integration of different Grid middlewares,
see Figure 2. Each Grid middleware supported by
WebCom-G has a unique computation engine plugin.
A WebCom-G installation can simultaneously sup-
port multiple plugins of the same type. Thus, for
example, different middleware tasks can be executed

MANAGER
MODULE

X
 M

 L

S
erialized

D
ata

From
IDE or
Other

WebCom
Machine

From Other
WebCom Machine

To Compute
Engine via
Backplane

Build Internal
Representation

X
 M

 L

S
erialized

D
ata

Internal
Object

Backplane

To Connection
Manager via

WebCom Machine
To Other

Representation
Build External

CONNECTION

Figure 3: Architecture of the Web Service Connection
Manager. XML or serialized object descriptions of a
Condensed Graph are converted to the internal rep-
resentation and passed on for execution. Likewise,
when sending an internal representation it may be
converted to XML, serialized object or both.

by the same compute engine.

3 Submission of Jobs

A number of mechanisms exist to facilitate job sub-
mission and communication between WebCom-G ma-
chines. One such mechanism uses Web Services to
invoke the job. The XML representation of a job
is communicated to WebCom-G via a specific Com-
munication Manager Module. This is responsible
for taking the XML description of the Condensed
Graph and for building the internal representation
of that graph. Once this internal representation is
constructed it is forwarded to the execution engine.
This is depicted in Figure 3.

The second way of submitting jobs is via a native
job transport mechanism involving Object Serializa-
tion. WebCom-G machines may submit jobs to each
other via this mechanism. This is outlined in Figure
4.

However, this will fail if the graph description is not
resident on both machines. Such a failure precipitates
the following actions:

MANAGER
MODULE

Representation
Build External

CONNECTION
MANAGER
MODULE

Representation
Build Internal

Internal
Object

Internal
Object

CONNECTION

Figure 4: Jobs being sent between WebCom-G ma-
chines are converted to a format suitable for trans-
mission, either XML or Serialized data. The receiv-
ing machine is responsible for reconstructing the job
and passing it on to its execution engine.

• The sender uses XML to communicate an XML
representation of the graph to the receiver,

• The receiver builds a representation of the task
from the XML description and

• Task data is communicated via object serializa-
tion.

Once a task description has been constructed, sub-
sequent communication of data for similar tasks may
be carried out by object serialization alone. This is
useful as the communication cost incurred by sending
large XML descriptions may be significant.

A third submission mechanism uses a lightweight
command line interface to invoke jobs already resi-
dent on a machine. This job submission interface is
intended to be used when scripting single application
executions during a development cycle.

4 Converting High Level Lan-

guages to Condensed Graphs

Two approaches to supporting native applications in
WebCom-G[10] are provided: Extraction and Anno-
tation. Extraction is the process of translating higher
level languages into a Condensed Graph representa-
tion. Annotation allows the developer to place hints
in the source code that direct a special compiler on
how to best construct the resulting Condensed Graph

Compiler

With

Annotatiions

 Source Code

Existing

 Condensed Graph

(i) Annotation

Compiler

 Source Code

(ii) Extraction

Figure 5: Native applications are supported by two
mechanisms: Annotation and Extraction.

representation of the application. These two methods
are shown in Figure 5.

The first approach, Extraction, is a process of ex-
tracting the parallelism at compile-time. Specifically,
this is achieved by translating the applications into
Condensed Graphs. This methodology is suitable for
legacy applications as well as for proprietary speci-
fication languages like Globus RSL. For traditional
high level languages, a translator performs a data
dependency analysis to identify the parallel blocks
within the source code. Condensed Graph conver-
sion rules are applied and the output is written in
XML format. This step is illustrated in Figure 6.

In a Globus environment, the Extraction process
extracts the jobs specified in the RSL and expresses
them and their sequencing constraints as a series of
nodes and arcs of a Condensed Graph. WebCom-
G subsequently executes the resulting Graphs. This
methodology benefits from the inherent features of
WebCom-G such as Fault Tolerance, Load Balancing
and Scheduling. For example, using the Fault Tol-
erance capability, if a particular job execution fails,
WebCom-G re-schedules the job for execution at a
later time.

The Condensed Graphs compiler works in either
fully automatic or semi automatic translation mode.
Using fully automatic translation with appropriate
analysis and interpretation, the uncovered parallel
blocks will be converted into the Condensed Graph
format. With semi-automatic translation, the uncov-
ered data blocks will be presented to the application

int func(int a, int b, int c, int d)
{

int x, y, z;
x = a+b;
y = c+d;
z = x+y;
return z;

}

int main()
{

int r = func(1,2,3,4);
printf("%d",r);

}

C Program
function

list

declaration
function

declaration
function

function
head

function
headblock

function
block

function

func() parameters

return type
(int)

variables
local

= = = return func()main print

Abstract Syntax Tree Representation

x + y + z z+

yxdcba

<cg:operatorport operator="cg.engine.EnterOperator"/>

<cg:graphdef name="main">
<cg:node name="E">

<cg:destinationport>
<cg:destination nodename="f" portnumber="0"/>

</cg:destinationport>
<cg:destinationport>

...
</cg:destinationport>
</cg:node>
<cg:node name="f">

...
<cg:operatorport operator="F"/>
<cg:destinationport>

<cg:destination nodename="X" portnumber="0"/>
</cg:destinationport>

</cg:node>
<cg:node name="X">

<cg:operandport strictness="strict"/>
<cg:operatorport operator="cg.engine.ExitOperator"/>

</cg:node>
<cg:destinationport/>

</cg:graphdef>
...

Condensed Graphs XML Representation

FE X

b

c

d

e

XE

+

+

+

Analyze

Rules
Apply CG

Condensed Graphs

Main:

F:

Figure 6: Example translation of sequential C code to
Condensed Graphs(CG) XML representation. The C
program is analyzed to produce an Abstract Syntax
Tree(AST) representation. Applying CG rules to the
AST results in the XML representation.

developer through the WebCom-G Integrated Devel-
opment Environment thus enabling further optimisa-
tions to be performed.

The second approach, Annotation, allows the de-
veloper to identify parallel blocks within the source
code by including some Condensed Graph specific an-
notations. Specifically, this aims to identify coarse
grain parallelism. The Condensed Graph APIs are
developed for this purpose. Source code contain-
ing these annotations can be later optimised us-
ing the translation mechanisms mentioned previously.
Thus, translating legacy applications into Condensed
Graphs enables non Grid aware applications to be-
come grid aware.

The two translation approaches described provide
for encapsulating legacy applications and releasing
them to a Service Repository. These services are ex-
posed to and may be exploited by the different de-
velopment environments mentioned. The Condensed
Graph XML format acts as a suitable interface for
services in this repository, Figure 7. By utilising ser-
vices uncovered, the development environment does
not need to maintain state information about the tar-

get execution environment. This is done at run-time
by the appropriate execution environment itself. Ser-
vices, possibly representing complex independent ap-
plications, can easily be combined to construct more
powerful applications. These applications may use
multiple bindings and implementations for their ser-
vices.

5 WebCom-GIDE Problem

Solving Environment

WebCom-GIDE is a development tool that enables
visual application development and optimisation.
From within the IDE, a user can create, load, save
and execute applications. Condensed Graphs are dis-
played and edited graphically within the IDE.

The IDE also shows a palette of components
that may be used to construct Condensed Graphs.
This palette includes middleware and legacy services
whose details have been added to a central database
by middleware interrogators. The IDE checks the
database periodically, and dynamically adds any new
components found to the palette. The palette is ar-
ranged hierarchically, with separate categories for dif-
ferent middlewares and different classes of compo-
nents.

A new application begins as a single empty Con-
densed Graph. An application may consist of many
Condensed Graphs, and each Condensed Graph has
its own window within the GUI.

Nodes are added to an application by dragging
them from the palette onto one of the application’s
development windows. The path of input and result
data through a graph is then controlled by placing
edges between the various nodes.

Native application support outlined in Section 4
forms one constituent part of WebCom-GIDE. The
translation support can be applied to the specifica-
tion languages like Globus RSL[6]. Using the Con-
densed Graph compiler, the jobs and their sequencing
constraints can be extracted and converted into Con-
densed Graph format. The Condensed Graph repre-
sentation, in XML format, provides a way to execute
tasks in different middlewares seamlessly. An sample

App 1

App 2
App 3

App 4 App n

XML Via
WebService

Translation / Anotation

Scripting Languages: RSL ...
Native Applications: C/C++/Java ...

Platform

Distributed Computing Resources
Different Grid Middlewares/

WebCom Execution Platform

Integrated
Development
Environment

Application
Repository

XML

XML

Execution

Service

Repository

Figure 7: Interactions between different components in the WebCom-G system. Legacy applications may be
translated/annotated to populate the IDE service and application repositories. The IDE can be used to create
further applications. Applications can be submitted to the Execution platform via web services.

illustration of the IDE is given in Figure 8.

6 Conclusions and Future

Work

This paper presents ongoing research into the area
of integrating a number of Grid middleware service
providers at the application level. It outlines the
WebCom-G execution platform and its constituent
modules. The benefits of such a modularised execu-
tion platform to application developers include the
removal of Fault Tolerance, Scheduling, Security and
Load Balancing operations from the task of the de-
veloper since they are vested in the WebCom-G ab-
stract machine. This allows them to concentrate on
specifying a problem solution and not problem imple-
mentation. An application development environment
based on WebCom-G enables traditional application
development mechanisms to utilise computational re-
sources made available via different Grid middle-

wares. It provides two mechanisms that support ex-
ecution of legacy code. An application development
environment for WebCom-G application construction
incorporates support for legacy code through the pro-
cesses of Annotation and Extraction and results in
that code having the ability to both invoke Grid ser-
vices and to be invoked as a Grid service.

Currently Computation Engine modules exist for
COM, DCOM, .NET, J2EE, CORBA and Globus.
Future work includes expanding WebCom-G to sup-
port other Grid systems such as Netsolve[2], DIET[1]
and others.

References

[1] Distributed Interactive Engineering Toolbox.
http://graal.ens-lyon.fr/DIET/.

[2] Sudesh Agrawal, Jack Dongarra, Keith Sey-
mour, and Sathish Vadhiyar. NetSolve: Past,
Present, and Future - a Look at a Grid Enabled

Figure 8: Sample Screen shot of the IDE, showing the Graphs used to generate a Fibonacci sequence.

Server. Grid Computing: Making the Global In-
frastructure a Reality, Edited by F. Berman, G.
Fox, and A. Hey, Wiley Publisher, 2003, ISBN
0-470-85319-0. .

[3] Rajkumar Buyya and Srikumar Venugopal. The
Gridbus Toolkit for Service Oriented Grid and
Utility Computing: An Overview and Status Re-
port. Proceedings of the First IEEE Interna-
tional Workshop on Grid Economics and Busi-
ness Models (GECON 2004, April 23, 2004,
Seoul, Korea), 19-36pp, ISBN 0-7803-8525-X,
IEEE Press, New Jersey, USA.

[4] Henri Casanova. Simgrid: A Toolkit for the
Simulation of Application Scheduling. 1st Inter-
national Symposium on Cluster Computing and
the Grid,May 15 - 18, 2001,Brisbane,Australia.

[5] I. Foster and C. Kesselman. The Grid: Blueprint
for a New Computing Infrastructure. Published
by Morgan Kaufmann Publishers inc. ISBN:1-
55860-475-8.

[6] Globus. Globus RSL.
http://www.globus.org/gram/rsl spec1.html.

[7] Akshay Luther, Rajkumar Buyya, Rajiv Ran-
jan, and Srikumar Venugopal. Peer-to-Peer Grid
Computing and a .NET-based Alchemi Frame-
work. Book Chapter:High Performance Com-
puting: Paradigm and Infrastructure, Laurence
Yang and Minyi Guo (editors), Wiley Press, New
Jersey, USA. Fall 2004. (in print).

[8] John P. Morrison. Condensed Graphs: Uni-
fying Availability-Driven, Coercion-Driven and

Control-Driven Computing. PhD thesis, Eind-
hoven, 1996.

[9] John P. Morrison, Brian Clayton, David A.
Power, and Adarsh Patil. WebCom-G: Grid En-
abled Metacomputing. The Journal of Neural,
Parallel and Scientific Computation. Special is-
sue on Grid Computing. Guest Editors: H.R.
Arabnia, G. A. Gravvanis and M.P. Bekakos. Ac-
cepted for publication April 2004.

[10] John P. Morrison, Sunil John, and David A.
Power. Supporting Native Applications in
WebCom-G. Distributed and Parallel Systems
Cluster and Grid Computing Series: The Kluwer
International Series in Engineering and Com-
puter Science. Editors: Zoltan Juhasz et al, Vol.
777, September, 2004.

[11] John P. Morrison, James J. Kennedy, and
David A. Power. WebCom: A Volunteer-Based
Metacomputer. The Journal of Supercomputing,
Volume 18(1): 47-61, January 2001.

[12] John P. Morrison, David A. Power, and James J.
Kennedy. An Evolution of the WebCom Meta-
computer. The Journal of Mathematical Mod-
elling and Algorithms: Special issue on Compu-
tational Science and Applications, 2003(2), pp
263-276, Editor: G. A. Gravvanis.

[13] David A. Power, Adarsh Patil, Sunil John, and
John P. Morrison. WebCom-G. Proceedings of
the international conference on parallel and dis-
tributed processing techniques and applications
(PDPTA 2003), Las Vegas, Nevada, June 23-26,
2003.

[14] Geoff Stoker, Brian S. White, Ellen Stackpole,
T. J. Highley, and Marty Humphrey. Toward Re-
alizable Restrected Delegation in Computational
Grids. European High Performance Computing
and Networking. Amsterdam, June 25-27, 2001.

