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1.1 INTRODUCTION

FPGAs (Field Programmable Gate Arrays) are silicon chips that can be continu-
ously reprogrammed with application specific logic configurations. This interesting
property gives them many advantages over ASICs (Application Specific Integrated
Circuits), which contain fixed hardware configurations and cannot be altered to im-
plement different algorithms or updated if a bug is found. The first, simple, FPGAs
were manufactured in 1986 and since then they have increased considerably in logic
density and in clock speed (however, FPGA clock speeds are not increasing at the
same rate as microprocessor clock speeds, see below). As FPGA logic density and
clock speeds increased, the field of Reconfigurable Computing - i.e., using the repro-
grammable aspect of FPGAs to implement different algorithms directly in hardware
- grew in popularity.

In order to avoid confusion it is instructive to clearly distinguish between the sim-
ilar but distinct fields of Reconfigurable Computing in Embedded Computing and
Reconfigurable Computing in High Performance Computing . FPGAs have found
widespread adoption in the Embedded Computing field as devices for prototyping
ASIC designs, creating a steadily growing, multi-billion dollar industry. Despite the
much greater complexity of FPGAs in comparison with ASICs, the economies of
scale achieved during their production has led to them becoming a viable alternative
to ASICs in many situations. With the release of the new Spartan 3 FPGA [1] it is
expected that FPGAs will push even further into high volume applications, offering
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a low cost alternative to ASICs. FPGAs have also eroded the Embedded Micropro-
cessor market, as they can offer the advantage of reprogrammability but at increased
execution speed. Indeed, FPGAs can be seen as blurring the distinction between
hardware and software by merging the functionality of ASICs and microprocessors
while maintaining the advantages of both. FPGAs containing Embedded Micropro-
cessors, such as the Virtex II Pro [2], have become available, allowing applications
to be created that are partitioned between hardware and software on the same logic
device. Since embedded microprocessors and FPGAs operate at similar clock speeds
(currently around 400MHz), significant application speedups are easily attainable
through the use of Reconfigurable Computing in embedded computing devices.

The goal of Reconfigurable Computing in High Performance Computing is to
decrease application execution time by utilizing FPGAs as co-processors in desktop
computers. There is a marked difference, however, between the clock speeds of desk-
top microprocessors and FPGAs. Relatively few applications can provide enough
parallelism for the FPGA to exploit in order to close this performance gap. Despite
this, applications do exist that can benefit greatly from FPGA implementation. This
paper discusses the experiences and lessons learned from trying to apply Reconfig-
urable Computing techniques to High Performance Computing. The work execution
times of several applications on FPGAs (placed on PCI boards) and general-purpose
desktop machines were compared (high performance workstations or SMP machines
were not considered). Comparisons of various cost factors are considered when
comparing FPGAs to microprocessors, including speedups, ease of programming
and financial cost.

Unfortunately, the field of Reconfigurable Computing lacks clear benchmarks for
comparing FPGAs to microprocessors. Such comparisons should include complete
descriptions of the FPGA and microprocessor. For example, it is not useful to state
that an FPGA can offer a five-fold decrease in application execution time over a
microprocessor without specifying the relative clock speeds of the devices used. The
development board on which the FPGA is placed is also of great importance. Since
FPGAs can access several memory banks in parallel, the type and number of banks
present on the board can have a significant effect on application performance. Also,
the number of FPGAs placed on the board can obviously make a big difference.
Boards with multiple FPGAs allows fine grain parallelism between the FPGAs and
hence may execute an algorithm much faster then a single FPGA alone.

The remainder of this paper is organized as follows: High Performance Computing
with Cluster Computing is discussed in Section 1.2. In Section 1.3, the history of
Reconfigurable Computing with FPGAs is discussed including the different types
of architectures used in Reconfigurable Systems. The Distributed Reconfigurable
Metacomputer (DRMC) project is discussed in Section 1.4, the goal of which is to
apply distributed FPGA acceleration to High Performance Computing applications.
Also discussed is the type of FPGAs used and the tools used to program them.
Sections 1.5 and 1.6 present applications that were implemented on DRMC/FPGAs.
The first shows how an application benefited from implementation on DRMC/FPGAs,
while the second illustrates that not all applications benefited from implementation
on DRMC/FPGAs with respect to application speedup, financial cost and ease of
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programming. Section 1.7 presents conclusions of the DRMC project and speculates
on the future of FPGAs in High Performance Computing.

1.2 HIGH PERFORMANCE COMPUTING WITH CLUSTER
COMPUTING

A cluster can be defined as “a collection of computers which are connected over
a local network and appear as a single computer system”. Cluster Computing has
the goal of gathering many computers together to work as one high performance
computer.

Interest in Cluster Computing has grown rapidly in recent years, due the avail-
ability of powerful desktop machines and high-speed networks as off-the-self cheap
commodity components. Clusters now provide a cheap alternative to supercomput-
ers and offer comparable performance speeds on a broad range of High Performance
Computing applications. Today, free software can be downloaded from the Internet
to allow groups of networked desktop machines to be easily combined into Beowulf-
type PC clusters [3]. For some, Cluster Computing is now seen as the future of High
Performance Computing [4].

Traditional High Performance Computing applications are diverse and are found
in the scientific, engineering and financial domains. To compete in these areas,
much research has been done in the area of cluster design. The goal of the DRMC
project was to take the idea of Cluster Computing (with desktop machines) one step
further, by adding Reconfigurable Computing hardware to form a Reconfigurable
Cluster using only off-the-self components. A Reconfigurable Cluster (see Fig. 1.1)
retains all the advantages of a traditional cluster, but also allows algorithms to be
implemented directly in hardware (on FPGAs), with the aim of improving application
execution speeds.

100 Mb Ethernet LAN

Fig. 1.1 Cluster containing reconfigurable computing boards
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1.3 RECONFIGURABLE COMPUTING WITH FPGAS

As of August 2003, state of the art FPGAs like the Xilinx Virtex II [5] had clock
speeds of 400 MHz and up to 10 million gates. As FPGA capabilities increased and
numerous early Reconfigurable Computing research projects reported that FPGAs
could provide enormous performance gains, research activities in the area surged [6]
[7]. Even after years of research, Reconfigurable Computing remains in the research
domain with very few examples of commercial use (one notable exception being
[8]). The main market for FPGAs is still ASIC prototyping and low-cost ASIC
replacement.

Many different approaches to exploiting Reconfigurable Computing exist. Some
of the most common are as follows:

1. Adding a Reconfigurable Logic Unit [9] as a functional unit to a micropro-
cessor (similar to an ALU). The microprocessor still executes algorithms in
the traditional von Neumann style, but parts of some algorithms can be imple-
mented in hardware and executed using the Reconfigurable Logic Unit. This
requires building a new microprocessor from scratch and so is an expensive
option.

2. Developing of custom machines with a specialized motherboard containing
some number of FPGAs [8]. Algorithms are mapped onto the different FPGAs
for execution. This approach is very different to the traditional von Neumann
style. This type of reconfigurable architecture is suited to fine grain parallelism
between the FPGAs.

3. Adding reconfigurable computing boards to general desktop machines using
the PCI bus. This is the approach taken by the DRMC project [10] [11].
Drivers running on the host processors allow the FPGAs to be configured with
chosen algorithms and data can be transferred to and from the reconfigurable
computing boards over the machines’ PCI buses. Other projects such as
[12] use the more unusual approach of mixing the algorithm’s logic with the
networking logic in order to try and speed up execution speed even further.
This requires a specialized reconfigurable computing board connected directly
to the network.

An extensive list of Reconfigurable Computing projects and their target application
areas can be found in [13] [14] [15]. The experiences described in this paper
are based on the DRMC approach, although undoubtedly particular approaches are
more suitable to implementing some applications than others. It may therefore be
claimed, that specialized architectures result in the optimum implementation for
certain problems (e.g., architectures that allow fine grain parallelism between several
FPGAs). In the DRMC project no specialist tuning was attempted, so applications
that are not suited to DRMC may execute better on other reconfigurable architectures.

Reconfigurable computing boards such as the RC1000 contain one or more FPGAs,
a number of external memory banks and PMC connectors are also usually present to
allow other hardware to be connected to the board, if desired.



RECONFIGURABLE COMPUTING WITH FPGAS A4

A significant factor mitigating against the increased adoption of reconfigurable
hardware is the fact that FPGA clock speeds are increasing at a far lesser rate than
microprocessor clock speeds. 1n 1991, top of the range microprocessors ran at 33
MHz, but FPGAs (Xilinx XC3090) could run as fast as reported in [17]. In June
2001, top of the range microprocessors ran at 1.7 GHz, but FPGAs could only reach
speeds of 200 MHz. In August 2003, top of the range microprocessors ran at 3.08
GHz, but FPGAs (Xilinx Virtex II Pro [2]) could only reach maximum speeds of 400
MHz.
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Fig. 1.2 Graph comparing the rates at which FPGA and microprocessor clock speeds are
increasing

Fig. 1.2 shows these comparisons and illustrates the different rates at which the
clock speeds of both FPGAs and microprocessors are increasing. If this trend contin-
ues into the future, FPGAs will have a very hard time competing with microprocessors
in the general-purpose High Performance Computing arena. If FPGAs are to outper-
form microprocessors, they need applications that can offer tremendous amounts of
parallelism. This challenge is compounded by the Place and Route tools currently
available. These determine if a design can fit on an FPGA and at what clock speed
the design can run. Very often designs end up with very poor clock speeds, since it
is virtually impossible to realize the maximum clock speed of an FPGA. Trying to
increase the clock speeds of designs beyond what the Place and Route tools initially
reports can become a very laborious process, requiring significant knowledge of the
underlying hardware by the designer. As a result, the speed at which the clock runs
on an FPGA is often far slower than the theoretical maximum.

Notwithstanding the limitations outlined above, those applications that do exhibit
the requisite level of parallelism will continue to see significant performance increases
in the future. Fig. 1.3 compares the rate at which FPGA and microprocessor densities
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Fig. 1.3 Graph comparing the rates at which the transistor count of FPGAs and the Intel
Pentium family of microprocessors increased through the 1990s.

have been increasing in recent years. If FPGA densities continue to increase at such
a dramatic rate, those applications already suited to acceleration using FPGAs will
see greater and greater speedups using Reconfigurable Computing techniques as time
goes on. However, due to the limitations imposed by the relatively low clock speeds
of FPGAs, there are many classes of application that are unlikely to benefit from
FPGA implementation in the foreseeable future.

1.4 DRMC: A DISTRIBUTED RECONFIGURABLE METACOMPUTER

The Distributed Reconfigurable Metacomputer (DRMC) project [10] [11] provides
an environment in which computations can be constructed in a high-level manner
and executed on clusters containing reconfigurable hardware. DRMC is unique
in that applications are executed on clusters using the Condensed Graphs Model
of Computing [18]. The DRMC system is comprised of several components: a
metacomputing platform containing a Condensed Graphs engine capable of executing
applications expressed as graphs,a Condensed Graphs compiler, a control program for
initiating and monitoring computations, and a set of libraries containing components
that simplify application development.

1.4.1 Application Development

A DRMC application consists of a set of graph definitions (expressed as XML, in a
scheme similar to the one outlined in [19]) and a set of executable instructions. In-
structions are implemented either in C or as FPGA configurations.Executable instruc-
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tions are represented by object code (contained in .o files) or FPGA configurations
(contained in .bit files).

The Condensed Graphs Compiler compiles the set of definition graphs and links
them with the set of executable instructions to produce a shared object ( . so) file ready
for dynamic linking and execution by the metacomputer. Any FPGA configurations
required by the computation are loaded separately by the metacomputer as needed.
Currently, application components are created manually, although tools to automate
this process are under development.

1.4.2 Metacomputer Overview

The metacomputer is a peer-to-peer UNIX application composed of a daemon and,
when an application is being executed, a multi-threaded computation process. The
daemon is lightweight and runs on each cluster node, listening for incoming messages.
At an appropriate signal from the control program, the daemon spawns a computa-
tion process. The computation process essentially consists of a number of threads
that exchange instructions and results (see Fig. 1.4). At its core is the scheduler,
responsible for routing instructions and results between the various modules.

Computation 1
Graph Condensed Graphs Engine ®
ngllijﬁtrg)r?ego‘je .so {Native Instruction Execution Thread | &
Reconfigurable i:'
Hardwa?e o } [FPGA Instruction Execution Thread | =
Local Area c ications Modul :
Network E _ _ _ ommunications Module N

Fig. 1.4 An overview of the various components comprising a DRMC computation process,

Scheduler

along with the resources managed by each. Arrows indicate the flow of instructions (I) and
results (R).

Instructions may arrive either from the Condensed Graphs Engine or from the
communications module. The scheduler sends native and Condensed Graph instruc-
tions to the Native Instruction Execution Thread. Likewise, FPGA instructions are
sent to the FPGA Instruction Execution Thread. Some instructions may have im-
plementations in both software and hardware, in which case the scheduler is free to
decide which thread is most appropriate. Instructions accumulate in the scheduler
while awaiting execution. The scheduler will delegate instructions to other cluster
nodes if this is deemed to be more expedient than waiting for an execution thread to
become available.

Results arrive from the execution threads or, in the case of instructions executed
remotely, the communications module. Results for instructions that initiated on the
local machine are sent to the Condensed Graphs Engine, progressing the computation.
Results for instructions that originate remotely are sent to the appropriate machines.
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1.4.3 Hardware Setup

The current metacomputer utilizes a standard Beowulf-type cluster [3], consisting of
eight nodes, each a commodity desktop machine running the Redhat Linux operating
system. The nodes were connected by a 100Mb Ethernet switch.

A single Celoxica RC1000 reconfigurable computing board [20] was fitted to
each cluster node (see Fig 1.5). These boards are PCI-based and incorporate a single
Xilinx Virtex XCV2000E FPGA [21] as well as 4 banks (each 2MBs in size) of
on-board memory. The four memory banks can be accessed in parallel by the FPGA.
This model of FPGA contains over 2.5 million gates and has a max clock rate of 100
MHz.

RC1000 board

Xilinx
Virtex-E
FPGA

Lo

/ pel Slot SD RAM Banks

Pentium
Processor

PCI Bus

Fig. 1.5 Celoxica’s RC1000 board

1.4.4 Operation

The execution of an application is initiated by sending the appropriate command from
the control program to an arbitrary node in the cluster. This initiator node then spawns
a computation process and broadcasts a message instructing the other cluster nodes to
do likewise, specifying a shared directory containing the application code. Once the
shared object containing the application code is loaded, a special registration function
is called that informs the computation process of the instructions available and the
libraries that the application depends on. The initiator node’s computation process
then commences execution of the application’s top level graph, which is equivalent
to a C main function.

As instructions become available for execution, they form a queue that is man-
aged by the scheduler. Some instructions are executed locally by sending them to
the computation process’s native instruction execution thread or FPGA instruction
execution thread. If these local resources are busy, some instructions will be sent for
execution to other cluster nodes. Instructions corresponding to Condensed Graphs
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may also be delegated to other cluster nodes, allowing parallelism to be exposed on
remote machines.

Each cluster node regularly advertises its load to the others, allowing the schedulers
to favour lightly loaded nodes when delegating instructions. If all the nodes are
heavily loaded with long instruction queues, the computation is throttled, i.e., no
more new instructions are generated until the backlog has eased.

The Control Program (CP) monitors the execution of a computation, providing
the user with real-time information on the state of each machine. The CP is also
responsible for the display of log messages as well as user interaction with executing
applications. In the event that a computation process exits prematurely (e.g., as the
result of a badly written instruction causing a segmentation fault), the DRMC daemon
executing on the affected node sends an appropriate error message to the CP before
broadcasting a message to halt the computation.

1.4.5 Programming the RC1000 board

The RC1000 boards were programmed using the Handel-C [22] language from
Celoxica. Handel-C is a derivative of ANSI C specifically designed for translation
to hardware. The language contains a number of extensions required for hardware
development, including variable data widths and constructs for specifying parallelism
and communications at the hardware level. Though Handel-C was chosen, other
languages such as Hardware Description Languages (HDLs) like Verilog [23] and
VHDL [24] could have been used, but these languages are extremely low level and
are very time consuming to use compared to programming in C. Handel-C has the
advantage of allowing software engineers with very little hardware knowledge to
program FPGAs quickly.

Once an algorithm has been implement in Handel-C, tested by the simulator
in the Handel-C IDE [25] and found to be correct it is compiled into EDIF [26]
format. This EDIF design file is then passed to the Xilinx Place and Route tools
[27] which produces a .bit (bitstream) file, which is used directly to configure the
FPGA. Analysis with Place and Route tools reveals the longest paths in the resulting
hardware design and thus the maximum clock speed at which a design can be run
(sometimes the clock speed specified in the Handel-C code can not be met). If clock
rate was not set in the Handel-C code, the Handel-C compiler sets it to 20 MHz
by default. Through a process of iterative refinement, various optimizations can be
performed until an acceptable level of speed/efficiency is reached - this means each
time the clock speed is not met, the Handel-C code is modified and re-compiled and
the resultant EDIF design is again passed through the Place and Route tools. Place
and Route can be a long and cumbersome processes. When designs take up large
amounts of the resources on the FPGA or/and have high clock speeds set, Place and
Route can become a very long task. The example application in the next section
took up large amounts of the logic of the FPGA, and it took well over a day to go
through the process of going from the Handel-C code to a .bit file (on a 1.8 GHz
Pentium 4 machine with 1 GB of RAM). Therefore, the iterative refinement to get
the desired clock rate for large designs can be a slow process. As a result, the process



of application development on an FPGA is considerably more difficult than on a
microprocessor.

1.5 ALGORITHMS SUITED TO THE IMPLEMENTATION ON
FPGAS/DRMC

An algorithm suited to implementation on an DRMC/FPGAs is now presented. The
chosen algorithm is a cryptographic key-crack application (of RC5), and is a good
example of an embarrassingly parallel computation [28], i.e., it can be divided into
completely independent parallel tasks that require no intercommunication.

The RCS5 key-crack application running on DRMC is discussed in detail in [10].
The rest of this section presents a brief summary of that work.

RCS5 is a simple and fast symmetric block cipher first published in 1994 [29]. The
algorithm requires only three operations (addition, XOR and rotation), allowing for
easy implementation in hardware and software. Data-dependent rotations are used to
make differential and linear cryptanalysis difficult, and hence provides cryptographic
strength. The algorithm takes three parameters: the word size (w) in bits, the
number of rounds () and the number of bytes (b) in the secret key. A particular
(parameterized) RC5 algorithm is denoted RC5-w/r /b, with RC5-32/12/16 being
the most common. As 64-bit chip architectures become the norm, it is likely that 64
bit word sizes will increase in popularity. In that case it is suggested that the number
of rounds be increased to 16. Variable length keys are accommodated by expanding
the secret key to fill an expanded key table of 2(r + 1) words.

RCS5 is extremely resistant to linear cryptanalysis, and is widely accepted as being
secure (notwithstanding certain pathological examples that could yield to differential
cryptanalysis and timing attacks) [30]. A brute-force attack (which this work focuses
on), works by testing all possible keys in turn against an encrypted piece of known
plain-text. This type of attack is feasible when key lengths are small and have been
successfully mounted on a number of occasions using Networks of Workstations
and distributed computing projects. For longer key lengths (128 bits or greater), the
brute-force approach s totally inadequate, requiring millions of years to yield the key.
Despite this, brute-force RC5 key-cracking is a good choice of application in order to
compare the possible speed-up an FPGA can give over a traditional microprocessor
implementation.

The RCS application was implemented as a graph definition file, and a single
checkKeys function implemented both as a native and an FPGA instruction - yield-
ing a hardware and a software implementation. Other instructions required by the
application were invoked directly from the DRMC libraries. The graph definition
file was created using an XML editor. The computation graph is quite simple - it
divides the key space into partitions (each containing 3 billion keys) that are then
passed to instances of the checkKeys instruction. This instruction is responsible for
encrypting the known plain-text with all the keys in the supplied key-space partition,
and comparing the encrypted plain-text with the known cipher-text. If a match is
found, the key is returned.
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The software and hardware implementations of checkKeys are based on the RC5
implementation contained in RFC 2040 [31]. To create the native implementation,
this code was augmented with an extra function interfacing with DRMC to perform
type conversions. The compiled object code and the graph definition file were passed
to the Condensed Graphs Compiler to create a shared object capable of being executed
by the metacomputer.

The hardware implementation of checkKeys was created with Handel-C. The
process of converting an ANSI C program to efficient Handel-C is relatively straight-
forward in comparison to traditional hardware design languages such as Verilog and
VHDL. When the design was finished it ran at 41 MHz and consisted of three identi-
cal pipelines operating in parallel, each consisting of 8 stages. The longest stage took
72 clock cycles to execute, so the speed of the FPGA design is calculated as follows:

41MHz /72 *3 = 1.708333 million keys per second.

The table below shows the results of the execution speed of the FPGA (at 41 MHz)
compared to a Pentium II 350 MHz and a Pentium IV 2.4 GHz.

1,300,000 A
1,708.333
- 1,600,000 B
s
2 1,400,000 B
(7]
o 1,200,000 [~ B
o
1,000,000 - -
X
3
2 800,000 - -
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Q
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400,000 [~ B
200,000 — 168,000 _
40,000
0
Virtex-E 2000 FPGA Pentium 4 Pentium 2
(41 MHz) (2.4 GHz) (350 MHz)

Fig. 1.6 Compares the speed differences between microprocessors and FPGAs for searching
RCS key spaces

As can be seen from Fig. 1.6 the FPGA provided more than a ten fold increase in
speed over the Pentium IV and a 42 fold increase over the Pentium II. Newer FPGAs
(such as the Virtex II) would offer even further speed-ups over the Virtex E FPGA
used in this work as the algorithm could not alone benefit from increased clock speeds
but also from higher logic densities as well. Not even a (top of the range) 3 GHz
microprocessor could compete with an FPGA on this application.

A cluster containing eight Pentium II processors and eight RC1000 boards pro-
vides enough computing power to search the entire key-space of a 40-bit RCS5 key in
less than 22 hours. That’s over 350 times faster than if the eight Pentiums alone were
used. This shows that FPGAs can offer significant speed-ups over traditional micro-
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processors on this type of algorithm - highly parallel, easy to pipeline, little updating
of a memory store (few memory accesses) and operations that a microprocessor does
slowly.

Real world applications that are similar to the RC5 key-crack application (and
could benefit from implementation on DRMC/FPGAs) include encryption, compres-
sion and image processing.

It must be noted that when creating the Handel-C design for the RC5 application,
significant time was spent pipelining the design and that pipelining severely affected
the readability of the Handel-C source code. As a result, unlike C code for a
microprocessor, updating Handel-C code that has be extensively pipelined is a difficult
process. Also, compiling the Handel-C code to a .bit file took a long time - over a
day on a 1.8 GHz machine with 1 GB of RAM.

1.6 ALGORITHMS NOT SUITED TO THE IMPLEMENTATION ON
FPGAS/DRMC

Some algorithms that were found not to be suited to implementation on DRMC’s
FPGA architecture are now presented. These include iterative matrix solvers [32]
[33] - Jacobi iteration and Gauss-Seidel iteration. These applications differ from the
RCS5 example described above in that they require many memory accesses.

Iterative matrix solvers are used to solve systems of simultaneous linear equations,
which are used extensively in scientific and engineering applications. The following
presents a quick overview of the Jacobi and Gauss-Seidel algorithms, for a detailed
discussion refer to [32] and [33]. The Jacobi iteration continuously applies the same
iteration on a matrix until it converges. In each new iteration, the value of each entry
in the matrix is calculated based on the values of its four neighbors in the previous
iteration. As all the values calculated in iteration k& depends on the values in the
iteration k — 1, each entry in the matrix could be processed in parallel. Therefore,
the Jacobi algorithm is highly parallel. The Gauss-Seidel iteration is similar to the
Jacobi iteration, except it uses data as soon as it becomes available. When calculating
the values for each entry of the matrix on iteration k, the new values of any neighbor
that has already been calculated in the iteration k are used instead.

As these iterative matrix solvers involve floating point math, the floating-point
library [34] from Celoxica was used. The first problem encountered was that when
these algorithms were implemented using the floating-point library, the Place and
Route tools reported that the maximum clock rate could only be set as high as
20 MHz, even though the maximum clock speed of the FPGA used is 100 MHz.
Although it is unrealistic to expect to get a design running this high, 20 MHz was
rather a poor result.

The following three algorithms were implemented on the RC1000 boards and their
execution times were recorded:

1. Gauss-Seidel Iteration: One large matrix was placed into the four memory
banks of the RC1000 board. The banks are not accessed in parallel due to
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the nature of the Gauss-Seidel algorithm. The algorithm reads enough data to
compute the value of four entries in the matrix at a time and writes the results
back into memory. Pipelining and parallelism were used as much as possible.

2. JacobiIteration: The Jacobi algorithm requires twice as much memory as the
Gauss-Seidel algorithm so the matrix has to fit into just two memory banks.
Due to the parallel nature of the Jacobi algorithm the matrix is partitioned in
two to allow the FPGA to operate on two memory banks in parallel. For each
iteration, the algorithm computes the values of the matrices for the next iteration
and writes them to the two empty banks. When the iteration is complete the
values on the boundaries of the two matrices are exchanged. On the next
iteration, the data is read from the memory banks that were written to in the
previous iteration and written to the banks that were read from in the previous
1teration.

3. Gauss-Seidel - Jacobi Hybrid: This algorithm is based on the combination
of the Gauss-Seidel algorithm and the Jacobi algorithm and is discussed in
[32] (Page 142). The matrix is broken into four; each sub-matrix is placed in
one of the memory banks on the RC1000 board. In each iteration, the FPGA
performs a Gauss-Seidel iteration on each of the memory banks in parallel. At
the end of iteration, values on the boundaries of the matrices are exchanged
(Jacobi iteration). This hybrid algorithm does not require many more iterations
then the Gauss-Seidel algorithm to converge - in [32], it is stated that with a
128*128 matrix decomposed into 8 sub-matrices, there is only a five percent
increase in the number of iterations compared to performing the Gauss-Seidel
algorithm on the entire 128*128 matrix.

Fig. 1.7 shows and compares the execution times of these three algorithms to
the Gauss-Seidel algorithm running on 1.8 GHz microprocessor. Each algorithm
was run on a 500*500 matrix for 1000 iterations. These measurements record the
execution time of the algorithms on the FPGA. The time spent partitioning the matrix
and transferring data over the PCI bus to the RC1000 board was not considered.

Reflecting on the poor execution times of the FPGA, its easy to see that even
if the RC1000 board was to run at its maximum speed of 100 MHz (which would
never be possible) it would not compete with the 1.8 GHz machine. Even though
the FPGA can access the four memory banks in one clock cycle, for every clock
cycle of the FPGA, the microprocessor can access its main memory 11 times. In
addition, reconfigurable computing boards are considerably more expensive than
general-purpose desktop machines. Any speed-up which might be gained from
Reconfigurable Computing must always be offset by the relative cost of the hardware.
In this case, the FPGA implementation took longer and was more difficult to program
then the microprocessor and couldn’t compete with the microprocessor for speed - a
poor result overall.

Even though these iterative matrix solver algorithms are very simple, many other
algorithms exhibit the same characteristics i.e., they require many memory accesses.
If an algorithm exhibits a lot of parallelism and if the data needed for this parallelism is
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1000 iterations on a 500*500 Matrix Execution Time in Seconds |

Gauss-Seidel on 1.8 GHz Pentium 4 11
with 1 GB of 233MHz RAM

Gauss-Seidel on a RC1000 board running at | 134
20 MHz

Jacobi on a RC1000 board running 56
at 20 MHz

Gauss-Seidel - Jacobi hybrid algorithm 43 (For 1050 iterations - 45)
on a RC1000 board running at
20 MHz

Fig. 1.7 Comparison of the execution speed of FPGAs and microprocessors while executing
iterative matrix solvers

all stored in the same memory bank, the FPGA can only access this data sequentially
and slowly due to its relatively slow clock speed.

Although many general-purpose algorithms are similar to those discussed in this
section, with far fewer exhibiting the characteristics of the RC5 algorithm discussed
in the previous section. Except for a few specialized applications, when all factors are
considered - cost, speed-up and ease of programming, it is hard to imagine that with
current technology how FPGAs (based on the model of PCI-based reconfigurable
computing boards) can be considered a cost effective general-purpose computing
platform compared to top of the range desktop machines.

Ignoring the fact that several standard desktop machines could be purchased for
the same price as one RC1000 board, combining multiple RC1000 boards to compete
with one microprocessor is not efficient either, since the RC1000 board is connected
to the PCI bus of the machine and fine grain parallelism between boards is very
inefficient. The reconfigurable architecture of DRMC is best suited to coarse grain
parallelism between the reconfigurable computing boards, in which the FPGAs ex-
ecute algorithms at least as fast (but preferably faster) than the microprocessors of
desktop machines. It is worth noting that other reconfigurable computing architec-
tures would be a lot more suited to fine grain parallelism between FPGAs and thus
more suited to the iterative matrix solver algorithms mentioned above. For exam-
ple, consider the development of custom machines with a specialized motherboard
containing a very large number of FPGAs. This architecture allows for fine grain
parallelism between the FPGAs. Smaller (and cheaper) FPGAs could be used in
these machines to reduce cost. This type of machine would be complicated to pro-
gram and despite its high cost would potentially outperform any standard desktop
machine while executing algorithms like the iterative matrix solvers. It is not being
suggested that this type of machine would provide an efficient general computing
platform since many sequential algorithms could not take advantage of the multiple
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FPGAs. However, for standalone applications that expose much parallelism such an
architecture would provide a high performance alternative.

1.7 SUMMARY

In this paper, experiences and lessons learned from trying to apply Reconfigurable
Computing (FPGAs) to High Performance Computing were discussed. This work
compared execution speeds of FPGAs to general desktop machines (high performance
workstations or SMP machines were not considered). Top of the range desktop
machines currently run at over 3 GHz, so the gap in clock speeds between these
and FPGAs is significant. It was found that an application would have to exhibit
significant parallelism for the FPGA (on a PCI board) to outperform a modern
microprocessor. The clock speed of microprocessors is increasing at a far greater
rate then FPGA clock speeds, and as a result big differences in clock speed between
the FPGAs and microprocessors can diminish much of the FPGAs’ advantages. This
problem is not an issue in Embedded Computing as embedded microprocessors run
at a similar clock rate to FPGAs.

Speeding up some of the applications discussed in this paper might be possible
using some advanced features like multiple clock domains on the FPGA, creating
caches on the FPGA (to try and reduce memory access to external RAM banks) and
programming with hardware description languages. These require specialized skills
on the part of the programmer. To be widely accepted, FPGAs need to be as easy
to program as microprocessors. Also, other reconfigurable architectures that allow
fine grain parallelism between multiple FPGAs would provide a better execution
environment for certain algorithms.

FPGAs and their development boards are far more expensive than general desktop
machines. Thus when comparing reconfigurable computing boards to general desk-
top machines the reconfigurable computing board would need to achieve a significant
speedup to justify its cost. So, not alone is fine grain parallelism between recon-
figurable computing boards inefficient because of communication over the PCI bus,
but several desktop machines could be purchased for the price of one reconfigurable
computing board.

There are many publications claiming significant speedups using FPGAs com-
pared to microprocessor systems [13] [14] [15]. These claims need to be viewed
in the correct context to ascertain absolute advantages. One thing is clear; proper
benchmarks are needed when comparing the speed of FPGAs to microprocessors in
order to paint a more accurate picture of their advantages and limitations.

In [16] it is stated that “a good speedup candidate for FPGA implementation is
complex, it requires operations the microprocessor does slowly, and it has few mem-
ory accesses”. Relatively few applications in High Performance Computing meet
these requirements. With current technology, when all factors are considered (exe-
cution speed, ease of programming and financial cost), the idea of using distributed
FPGAs (PCI-based reconfigurable computing boards) in Cluster Computing as a
general-purpose computing platform faces many obstacles. Before FPGAs become
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a viable general-purpose alternative to microprocessors in High Performance Com-
puting, there needs to be a reduction in their cost, better programming tools have to
be developed and the clock speeds of FPGAs need to move closer to the clock speeds
of microprocessors. The odds of these happening in the near future are small.

There are, however, many applications that are amenable to acceleration using
FPGAs. These include cryptography, compression, searching, pattern matching,
and image processing. As FPGA densities continue to increase at an impressive
rate (much faster than microprocessor densities), the speedups attainable for these
applications using Reconfigurable Computing will continue to increase dramatically.
To sum up, although Reconfigurable Computing in High Performance Computing
will offer better and better speedups over time to those applications to which it is
already suited, it is unlikely to break into new application domains due to the reasons
outlined above.
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