
WEBCOM: A WEB BASED DISTRIBUTED
COMPUTATION PLATFORM

JOHN P. MORRISON, DAVID A. POWER, JAMES J. KENNEDY
Centre for Unified Computing,
Department of Computer Science,
National University of Ireland,
Cork, Ireland.
http://www.cuc.ucc.ie

Abstract
The propagation of the World Wide Web into everyday use, coupled with Java technologies,
provide a foundation upon which a distributed computing environment can easily be constructed.
The WebCom system presented in this paper represents an attempt at implementing one such
environment. The system operates by distributing ’instructions’ to client machines for execution.
These instructions are created using an inherently parallel model of computation capable of
utilising data-driven, demand-driven and imperative computations.

Keywords: Parallel, Distributed, Metacomputing, Dataflow, Condensed Graphs, Java.

1. INTRODUCTION

Existing web based distributed computing systems[2, 4, 8, 9] involve the distribution of Java
objects to client machines which are connected using applets embedded within web pages or
specialised Java applications. Java applications are used so that the well known features of
applet security can be avoided, providing greater access to client machines. Application de-
velopers are required to determine the parallelism available in a particular problem and to use
libraries provided in conjunction with Remote Method Invocation (RMI) and Object Request
Brokering (ORB) to create a distributed system to suit the problem. WebCom uses similar ideas,
however, a much more simplistic approach to communication is adopted: only one generic ap-
plet is employed and both RMI and ORB are avoided. WebCom uses a graph based model of
computation[10, 11] to generate the instructions that will be executed on client machines. This
model is similar to the dataflow model [1, 5, 7, 13] but can also exploit demand-driven and imper-
ative computations simultaneously. This model implicitly exposes parallelism, however both the
programmer and feedback from underlying machine characteristics can influence the execution
profile. The Condensed Graphs model is hierarchical. Nodes are used to represent basic instruc-
tions or other Condensed Graphs. An extended version of the WebCom architecture allows for
the possibility for clients to act as masters. In this way, a complete Condensed Graph may be

sent to a client for execution. In the promotion process, other clients are reassigned to execute
work generated by the new master.

2. CONDENSED GRAPHS

While being conceptually as simple as classical dataflow schemes [7, 3], the Condensed Graphs
(CG) model is far more general and powerful. It can be described concisely, although not com-
pletely, by comparison. Classical dataflow is based on data dependency graphs in which nodes
represent operators and edges are data paths which convey simple data values between them.
Data arrive at operand portsof nodes along input edges and so trigger the execution of the asso-
ciated operator (in dataflow parlance, they cause the node to fire). During execution, these data
are consumed and a resultant datum is produced on the node’s outgoing edges. This result acts
as input to successor nodes. Operand sets are used as the basis of the firing rules in data-driven
systems. These rules may be strict or non-strict. A strict firing rule requires a complete operand
set to exist before a node can fire; a non-strict firing rule triggers execution as soon as a specific
proper subset of the operand set is formed. The latter rule gives rise to more parallelism but also
can result in overhead due to remaining packet garbage (RPG).

Like classical dataflow, the CG model is graph-based and uses the flow of entities on arcs to
trigger execution. In contrast, CGs are directed acyclic graphs in which every node contains not
only operand ports, but also an operator and a destination port. Arcs incident on these respective
ports carry other CGs representing operands, operators and destinations. Condensed Graphs are
so called because their nodes may be condensations, or abstractions, of other CGs. (Condensa-
tion is a concept used by graph theoreticians for exposing meta-level information from a graph
by partitioning its vertex set, defining each subset of the partition to be a node in the conden-
sation, and by connecting those nodes according to a well-defined rule [6].) Condensed Graphs
can thus be represented by a single node (called a condensed node) in a graph at a higher level of
abstraction. The number of possible abstraction levels derivable from a specific graph depends
on the number of nodes in that graph and the partitions chosen for each condensation. Each graph
in this sequence of condensations represents the same information but in a different level of ab-
straction. It is possible to navigate between these abstraction levels, moving from the specific to
the abstract through condensation, and from the abstract to the specific through a complementary
process called evaporation.

The basis of the CG firing rule is the presence of a CG in every port of a node. That is, a CG
representing an operand is associated with every operand port, an operator CG with the operator
port and a destination CG with the destination port. This way, the three essential ingredients of
an instruction are brought together (these ingredients are also present in the dataflow model; only
there, the operator and destination are statically part of the graph).

A condensed node, a node representing a datum, and a multi-node CG can all be operands. A
node represents a datum with the value on the operatorport of the node. Data are then considered
as zero-arity operators. Datum nodes represent graphs which cannot be evaluated further and so

are said to be in normal form. Condensed node operands represent unevaluated expressions.
They cannot be fired since they lack a destination. Similarly, multi-node CG operands represent
partially evaluated expressions. The processing of condensed node and multi-node operands is
discussed below.

Any CG may represent an operator. It may be a condensed node, a node whose operator
port is associated with a machine primitive (or a sequence of machine primitives) or it may be a
multi-node CG.

The present representation of a destination in the CG model is as a node whose own destina-
tion port is associated with one or more port identifications. The expressiveness of the CG model
can be increased by allowing any CG to be a destination but this is not considered further here.
Fig. 1 illustrates the congregation of instruction elements at a node and the resultant rewriting
that takes place.

g

5

f

5

f
g

Figure 1: CGs congregating at a node to form an instruction

When a CG is associated with every port of a node it can be fired. Even though the CG firing
rule takes account of the presence of operands, operators and destinations, it is conceptually as
simple as the dataflow rule. Requiring that the node contain a CG in every port before firing
prevents the production of RPG. As outlined below, this does not preclude the use of non-strict
operators or limit parallelism.

A grafting process is employed to ensure that operands are in the appropriate form for the
operator: non-strict operators will readily accept condensed or multi-node CGs as input to their
non-strict operands. Strict operators require all operands to be data. Operator strictness can be
used to determine the strictness of operand ports: a strict port must contain a datum CG before
execution can proceed, a non-strict port may contain any CG. If, by computation, a condensed
or multi-node CG attempts to flow to a strict operand port, the grafting process intervenes to
construct a destination CG representing that strict port and sends it to the operand.

The grafting process thus facilitates the evaluation of the operand by supplying it with a
destination and, in a well constructed graph, the subsequent evaluation of that operand will result
in the production of a CG in the appropriate form for the operator. The grafting process, in
conjunction with port strictness, ensures that operands are only evaluated when needed. An
inverse process called stemmingremoves destinations from a node to prevent it from firing.

Strict operands are consumed in an instruction execution but non-strict operands may be ei-
ther consumed or propagated. The CG operators can be divided into two categories: those that are
“value-transforming” and those that only move CGs from one node to another in a well-defined
manner. Value-transforming operators are intimately connected with the underlying machine
and can range from simple arithmetic operations to the invocation of sequential subroutines and

may even include specialized operations like matrix multiplication. In contrast, CG moving in-
structions are few in number and are architecture independent. Two interesting examples are
the condensed node operator and the filter node. Filter nodes have three operand ports: a
Boolean, a then and an else. Of these, only the Boolean is strict. Depending on the computed
value of the Boolean, the node fires to send either the then CG or the else CG to its destina-
tion. In the process, the other operand is consumed and disappears from the computation. This
action can greatly reduce the amount of work that needs to be performed in a computation if the
consumed operands represent an unevaluated or partially evaluated expression. All condensed
node operators are non-strict in all operands and fire to propagate all their operands to appropri-
ate destinations in their associated graph. This action may result in condensed node operands
(representing unevaluated expressions) being copied to many different parts of the computation.
If one of these copies is evaluated by grafting, the graph corresponding to the condensed operand
will be invoked to produce a result. This result is held local to the graph and returned in response
to the grafting of the other copies. This mechanism is reminiscent of parallel graph reduction
[12] but is not restricted to a purely lazy framework.

By statically constructing a CG to contain operators and destinations, the flow of operand
CGs sequences the computation in a dataflow manner. Similarly, constructing a CG to stati-
cally contain operands and operators, the flow of destination CGs will drive the computation in
a demand-driven manner. Finally, by constructing CGs to statically contain operands and des-
tinations, the flow of operators will result in a control-driven evaluation. This latter evaluation
order, in conjunction with side-effects, is used to implement imperative semantics. The power
of the CG model results from being able to exploit all of these evaluation strategies in the same
computation, and dynamically move between them, using a single, uniform, formalism.

3. IMPLEMENTATION

The WebCom system consists of a single master serving an arbitrary number of clients, called
Abstract Machines (AMs). The master consists of four parts. A standard web server, an Instruc-
tion Constructor (IC), an Instruction Manager (IM) and a Result Handler (RH). The IC makes
instructions and passes them to the IM which distributes them to the AMs. The AM is an essential
part of the WebCom system. It receives instructions from the IM and executes them to produce
results. These instructions can be simple machine operations, sequential programs or complex
Condensed Graphs. On execution the AM creates two socket connections to its master, one for
receiving instructions and one to send results. When these connections are established the AM
reads an instruction, executes it and sends a result back to the RH of the master. The returned re-
sults, once processed by the IC, propagate through the computation graph enabling the execution
of the destination instructions. This process continues for the duration of the computation.

Socket connections between the AMs and the master are held open continuously, avoiding
potential instabilities in the network handling of the JVM (See bug 4032593 in the Java De-
veloper Connection http://developer.java.sun.com). This decision also reduces communications

costs since repeated unsuccessful attempts at opening connections can be expensive. Each of
these open sockets are denoted by separate descriptor threads in the master. The IM consults
a list of these descriptors to manage all the available AMs. This information can be used for
optimisation purposes such as parallelism throttling, error recovery and load balancing.

4. RESULTS

A number of experiments were run to exercise WebCom using the graph depicted in Fig. 2. Each

G

E

G

X

1.0

IFEL

GRAPH F

MIN1

MUL

<= 0

W

W

W

W

W

W

W

W
W

W

W

W

W

W

W

W

W

W

EXPLODED VIEW OF W TRIANGLES

E

F

F

X

W

W

SYNC

SYNC

GRAPH G

Figure 2: Test execution graph

of the w nodes are primitive instructions whose grain-size can be changed from execution to
execution. Functions F and G represent condensed nodes which when executed increase the total
number of instructions to be executed. In the experiments each machine is a 266MHz Pentium
II with the clients running Linux and the master running Windows NT. The graph was executed
using a varying number of AMs and grain-sizes as illustrated in Fig. 3. This figure illustrates that
the execution time is reduces as AMs are added to the computation. Moreover, the amount of
speedup increases with grain-size. For a given problem size the percentage utilisation of each AM
decreases in proportion to the number of AMs available to the master. The rate of this decrease
is also proportional to the instruction grain-size. This is illustrated in Fig. 4. As expected, the
communication costs does not vary considerably with grain-size but does change with respect to
the number of AMs used. In this example the communication overhead falls rapidly from one to
four AMs. It then remains relatively constant to eight AMs. Whereas the subsequent addition
of AMs results in a decrease in the total execution time, the communication overhead begins
to increase proportionately as more time is spent managing communication channels. This is
illustrated in Fig. 5.

6 12 14 162 41

300000
350000
400000
450000
500000

150000
100000

50000

250000

0

E
xecution T

im
e (m

s)

200000

Number of Abstract Machines
8

"1000"
"750"
"500"

Grainsize /ms

"1250"

10

Figure 3: Execution profile for varying Grain-size and AMs

1

60

65

70

75

80

85

90

95

100

"1000"
"750"
"500"

Grainsize /ms

"1250"

%
 U

tilization

Number of Abstract Machines
2 4 6 8 10 12 14 16

55

Figure 4: Percentage utilisation of AMs for varying Grain-size

12

8000

10000

12000

14000

16000

18000

20000

22000

T
im

e (m
s)

24000

14 161

Grainsize /ms

"1250"
"1000"
"750"
"500"

Number of Abstract Machines

2 4 6 8 106000

Figure 5: Communication profile for varying Grain-size and AMs

5. IN SUMMARY

WebCom is a Metacomputer for executing Condensed Graphs which exploits common, widely
available infrastructures with a minimal installation procedure. It utilises free cycles on client
machines to execute programs in a distributed manner. Our results indicate that this is a viable
distributed computing platform for instructions of sufficient grain size. In this implementation
these instructions can be arbitrarily complex sequential programs or even complex Condensed
Graphs which are executed through a client-to-master promotion scheme. Our approach utilises
a lightweight communications protocol and recognizes the difficulties inherent in wide area fault
tolerant communications. In addition, pleasing characteristics of the Condensed Graphs model,
such as variable grain of execution and the combination of data-driven, demand-driven and im-
perative computations from a single, simple firing rule continue to offer unique solutions to
emerging problems. For example, network and processor load balancing is achieved through
promoting one or more clients and redirecting others to service the newly promoted masters.
This allows a condensed node in a graph to be viewed as a single instruction on one promoted
master but executed as a graph on another, diverting processing requirements and network traffic
from the original source. The WebCom system illustrates how the Condensed Graphs model of
execution can be combined with existing hardware to produce a flexible system of distributed
execution.

REFERENCES

[1] D. A. Adams. A computational model with dataflow sequencing. PhD thesis, Stanford,
California, 1968. TR/CS-117.

[2] Zvi Kedem Arash Baratloo, Mehmet Karul and Peter Wyckoff. Charlotte: Metacomputing
on the web. 9th International Conference on Parallel and Distributed Computing Systems,
1996.

[3] Arvind and Kim P. Gostelow. A computer capable of exchanging processors for time. Infor-
mation Processing 77 Proceedings of IFIP Congress 77 Pages 849-853, Toronto, Canada,
August 1977.

[4] P. Cappello, B. O. Christiansen, M. F. Ionescu, M. O. Neary, K. E. Schauser, and D. Wu.
Javelin: Internet-Based Parallel Computing Using Java. In Geoffrey C. Fox and Wei Li,
editors, ACM Workshop on Java for Science and Engineering Computation, June 1997.

[5] A. L. Davis and R. M. Keller. Dataflow program graphs. In IEEE Computer Magazine, Vol
15, No 2, pages 26 – 41, Feb 1982.

[6] Robert Norman Frank Harary and Dorwin Cartwright. Structural models: An introduction
to the theory of directed graphs. John Wiley and Sons,1969.

[7] J.R. Gurd, C. C. Kirkham, and I. Watson. The manchester prototype dataflow computer.
Communications of the ACM, 28(1):34–52, January 1985.

[8] Kwong-Sak Leung, Kin-Hong Lee, and Yuk-Yin Wong. Djm: A global distributed virtual
machine on the internet. Software Practice and Experience, 28(12), October 1998.

[9] Satoshi Hirano Luis F. G. Sarmenta and Stephen A. Ward. Towards bayanihan: Building an
extensible framework for volunteer computing using java. ACM 1998 Workshop on Java
for High-Performance Network Computing, Palo Alto, California, Feb. 28 - Mar. 1, 1998.

[10] John P. Morrison. Condensed Graphs: Unifying Availability-Driven, Coercion-Driven and
Control-Driven Computing. PhD thesis, Eindhoven, 1996.

[11] John P. Morrison and Niall J. Dalton. Condensed graphs: A multi-level, parallel, abstract
machine. 13th Annual International Symposium on High Performance Computing Systems
and Applications (HPCS’99),Queen’s University, Kingston, Canada, 13-16 June 1999.

[12] Rinus Plasmeijer and Marko van Eekelen. Functional programming and parallel graph
reduction. ISBN: 0-201-41663-8 Addison-Wesley Publishers Ltd.

[13] Keneth R. Traub, Gregory M. Papadopoulos, Michael J. Beckerle, James E. hicks, and
Jonathan Young. Overview of the monsoon project. Technical report, Massachusetts Insti-
tute of Technology, January 1991.

