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Abstract

Current Grid enabling technologies consist of stand-alone architectures. A typical
architecture provides middleware access to various services at different hierarchical
levels. Services exposed at these levels may be leveraged by the application program-
mer. However, the level at which the service appears in the hierarchy determines
both its richness and the complexity of its use. Thus, benefits gained by using these
services are defined by the manner in which they are accessed.

Generally, choosing to use a particular middleware service inclines the application
programmer to use the associated middleware suite as it is difficult to cherry-pick
services across middlewares. Interoperability and independent service access are not
easily facilitated in current middlewares.

WebCom-G is a fledgling Grid Operating System, designed to provide independent
service access through interoperability with existing middlewares.

This paper presents an overview of the WebCom-G Operating System and describes
the the WebCom-G Information System and WebCom-G’s mechanism for executing
Globus tasks.
Keywords - WebCom-G, Grid, Middleware, Interoperability, Co-Existence

1 INTRODUCTION

The computing power available in current desktop machines is equivalent to or
supersedes that of past high-performance computers(HPCs). Together with advances
in networking, HPCs can be built by harnessing the computing power of commodity
computers distributed around the world. These HPCs are typically owned by multiple
heterogeneous organisations and Grids are constructed from the amalgamation, shar-
ing and selection of networked services by these organisations. Such services are made
available under common sharing and security policies. In a typical Grid middleware,
these services are served through the Grid Information Services[5, 10]. Once these
services are known, they are aggregated and presented to the application developer
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by the Grid resource broker. The application developer must possess a knowledge of
both the middleware being used and the underlying computational hardware. Using
this information, task dependent libraries and binaries can be produced. These are
typically managed by the user, who also has to possess some knowledge of the target
architecture. This makes the process of application deployment both time consuming
and error prone.

Figure 1: An overview of the various grid middlewares

Much research is focused on exploiting the computing resources of geographi-
cally distributed volunteers using the Internet and user-level middlewares such as
SETI@Home and Distributed.Net. Other approaches, such as Globus[37, 11, 12],
Legion[15, 36], JXTA[32], Hydra[3] etc, exploit core level middleware technologies.
These provide a fundamental software infrastructure to build Grid technologies that
aim to find ways to make computing easier, faster, and more accessible to pro-
grammers and users. Some of these core middleware technologies provide a “bag
of services”[37], toolkits or integrated service architectures. Other projects: Condor-
G[7], PBS[31], LSF[30] provide independent job managers that interact with these
core middleware services.

Fig. 1 shows an overview of various Grid middlewares, from vertically integrated
solutions, such as Sun Grid Engine and Legion, to service oriented architectures, like
Globus, to others such as SETI@home and peer to peer systems.

The WebCom metacomputer[26] is an application execution environment operating
across the Internet or on intranets. It provides both an execution platform, and a
development platform. Applications are specified as Condensed Graphs[21, 24, 27],
in a manner which is independent of the execution architecture, and this platform
independence facilitates computation in heterogeneous environments.

In addition to its expressive programming model, WebCom automatically handles
task synchronisation, load balancing[25], fault tolerance[25], and task allocation with-
out the need for these decisions to be propagated to the application developer. These
characteristics, together with the ability of the CG model to mix evaluation strategies
to match the characteristics of geographically dispersed facilities and overall problem-
solving environment, make WebCom a promising Grid middleware candidate[22].

The remainder of this article is broken up as follows: Section 2 describes the We-
bCom Metacomputer. Section 3 shows how WebCom Middleware support is added
to marshal Globus. Section 4 extends the WebCom view to that of providing a novel
Grid Operating system called WebCom-G OS. Section 5 describes WebCom-G’s In-
formation System and finally Section 6 outlines some conclusions and future work.



2 WEBCOM METACOMPUTER

Metacomputing systems were developed to harness the power of geographically
distributed computing resources. Such resources generally consisted of machines con-
nected to intranets, the Internet and World Wide Web. Different projects in this
area of computing range from those harnessing the power of closely coupled networks
of workstations, such as Cilk-NOW[33, 17] and Treadmarks[8], to projects such as
Charlotte[1, 14], Bayanihan[16, 34, 9], Javelin[4] which utilize the processing power
of the Internet.

These systems typically use the server/client model for task distribution. Clients
normally consist of stand alone applications, or Java applets with different applets be-
ing used for different tasks. The stand-alone application client communicates with the
server via proprietary mechanisms, while applet based clients typically communicate
using Remote Method Invocation(RMI)[20], Object Request Brokers (ORB’s)[29] or
Object Serialization.

Distributed applications are typically constructed by using Application Program-
ming Interfaces (API’s) provided by the chosen system. Here the onus falls on the
programmer to explicitly determine the parallelism of the problem as well as having
to implement fault tolerance, load balancing and scheduling algorithms.

WebCom separates the application and execution environments by providing both
an execution platform, and a development platform. Applications are specified as
Condensed Graphs, in a manner which is independent of the execution architecture.
The independence provided by separating these two environments facilitates com-
putation in heterogeneous environments; the same Condensed Graphs programs run
without change on a range of implementation platforms from silicon based Field Pro-
grammable Gate Arrays[28] to the WebCom metacomputer. Fault tolerance, load
balancing, scheduling and exploitation of available parallelism are handled implicitly
by WebCom without explicit programmer intervention.

WebCom uses a server/client model for task distribution. Clients consist of Ab-
stract Machines(AM’s) that can be either pre-installed or downloaded dynamically
form a WebCom server. AM’s are uniquely comprised of both volunteers and con-
scripts. Volunteers donate compute cycles by instantiating a web based connection to
a WebCom server and dynamically downloading the client abstract machine. These
clients, constrained to run in the browsers sandbox, will execute tasks on behalf of
the server. Task communication is carried out over dedicated sockets. Pre-installed
clients, also communicate over dedicated sockets. Upon receipt of a task representing
a Condensed Graph (the task can be partitioned for further distributed execution),
such clients are promoted to act as other WebCom servers. The returning of a result
causes a promoted AM to be demoted, and act as a simple client once more.

The execution platform consists of a network of dynamically managed machines,
each running WebCom. WebCom can assume a traditional client server connection
model or the more contemporary peer to peer model, Fig. 2.

WebCom sees each abstract machine as a “unit”. Each unit contains a number
of modules. The modules include an execution engine module and others for com-
munication, load balancing, fault tolerance, scheduling and security, Fig. 3. These
modules are plugins to a backplane. Communications between WebCom units use a
messaging system. Plugins can send messages between themselves on the local unit
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Figure 2: WebCom can be configured as both a peer to peer hierarchy (A) and a tradi-
tional server client hierarchy (B). Each unit can receive instructions that comprise of
either Condensed Graphs or “atomic” instructions. Atomic instructions are generally
value transforming instructions and can be of arbitrary grainsize.

or to any plugin on other connected units. The default engine module is capable of
executing Condensed Graphs applications.
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Figure 3: A WebCom Unit consists of a collection of plugins. One each for the fault
tolerance, load balancing, compute engine, connection manager, security and schedul-
ing. The backplane is used to bootstrap the whole system and handles communication
between the plugins.

A WebCom execution is initiated by a user on a single unit launching a Condensed
Graph application. As nodes become available for execution they are formed into
messages and passed to the scheduler. The scheduler, in conjunction with the load
balancing, fault tolerance, communications and security plugins decide where the
node is to be executed. If it is to be executed locally it is passed back to the engine.
For remote execution, information about the unit selected to execute the node is
incorporated into the message, and the message is then passed to the communications
manager plugin for distribution to the selected unit.

Once a node has completed its operation, a result message is created and returned to
the unit where the corresponding instruction originated. This unit then incorporates
the returned result into its graph and the execution proceeds. If at any time an
executing node fails to complete its task, the fault tolerance plugin will cause the



node to be rescheduled to an alternative compatible unit. If no such unit is available,
the node is retained for subsequent assignment.

WebCom possesses a node targeting mechanism. For example, if a particular node
represents a COM instruction, that instruction is sent to a WebCom unit with a COM
engine plugin capable of executing the instruction. This mechanism is the same for
other technologies such as DCOM, EJB and Corba. One implementation of this
system (Anyware) was used to create enterprise wide applications using middleware
integration. This philosophy can be applied at higher levels of abstraction.

3 WEBCOM MIDDLEWARE

The WebCom metacomputer described in Section 2 provided the basis for the uni-
fication of existing midlewares such as Corba, EJB, COM, DCOM. Interaction with
each middleware is handled through an appropriate compute engine plugin. Web-
Com provides a general plugin interface. By adhering to this interface plugins can
be easily constructed for each of the modules outlined previously. Specific compute
engine plugins can be created to leverage existing Grid technologies, such as Globus.
The remainder of this section briefly describes task execution within the Globus en-
vironment and proceeds on to detail WebCom’s marshaling of Globus tasks.

3.1 Globus Execution

Globus provides the basic software infrastructure to build and maintain the Grid. As
dynamic networked resources are widely spread across the world, information services
play a vital role in providing Grid software infrastructure, discovering and monitoring
resources for planning, developing and adopting applications. A crucial part of every
Grid is the information services. The onus is on the information service to support
the initial discovery and subsequent use of resources and services.

An organisation running Globus will host it resources in the Grid Information Ser-
vice (GIS) which is running on its gatekeeper machine constituting the organisations
entry point to the grid.

The GIS will typically contain both static and dynamic information reflecting the
transient and heterogeneous nature of the grid platform. Static informaton includes
datails of numbers and configurations of compute nodes. Dynamic features of the
grid are captured in machine loads, storage and network information. Machines
running Globus may use a default scheduler or more advanced schedulers such as
those provided by Condor, LSF, PBS and Sun Grid Engine.

Typically, users authenticated via the Grid Security Infrastructure (GSI) create
a Resource Specification Language (RSL) script representing the job they wish to
execute on Globus. This script is then executed on the Gatekeeper machine, specifying
the application to run and the physical node(s) the application should be executed on
and any other relevant information. The gatekeeper contacts a job manager service
which in turn decides where the application is executed. For distributed services, the
job manager negotiates with the Dynamically Updated Request Online Co-allocator
(DUROC) to find the location of the requested service. DUROC makes the decision as
to where the application is executed by communicating with each machine’s lower level
Grid Resource Allocation Manager (GRAM). This information is communicated back
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Figure 4: Globus Execution model. A user generates an RSL script and submits it
to the gatekeeper. The gatekeeper, in conjunction with DUROC and GRAM facilitate
the distributed execution of requested services on the underlying nodes.

to the job manager. The job manager will schedule the execution of the application
according to its own policies. If no job manager is specified, then a default service
is used. This is usually the “fork” command, which returns immediately. A typical
grid configuration is shown in Fig. 4.

There are some disadvantages to using RSL scripts. Most notably, in a distributed
execution if any node fails, the whole job fails and will have to be re-submitted by
the user at a later time. Furthermore, there is no diagnostic information available
to determine the cause of failure. Only resources known at execution time may
be employed. There is no mechanism to facilitate job-resource dependencies. The
resource must be available before the job is run, otherwise it fails. Within Globus,
there is no checkpointing support, although some can be included programatically
or by specifying an appropriate job manager. This may not be feasible due to the
particular grid configuration used. Also, RSL is only suited to tightly coupled nodes,
with permanent availability. If any of the required nodes are off-line, the job will fail.

3.2 Marshaling Globus

Due to the highly dynamic nature of resource availability of Globus, it is possible that
a job is scheduled with the required resources, but at execution time some resources
may no longer be available. This may be caused by hardware failure for example.
This unavailability of resources will cause the job to fail. Thus, the scheduling of a
large number of jobs to a remote site becomes hard to achieve successfully.

By including jobs as nodes in a Condensed Graph application, WebCom’s node
targeting mechanism can be used to send them to any existing job manager. Further-
more, the actual job configuration becomes dynamic: the complete configuration may
be generated at runtime as a result of the execution of other nodes in the associated
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Figure 5: WebCom-G: WebCom with a Globus/Grid plugin facilitates the execution of
grid applications from within a condensed graph. Failures are detected and rescheduled
using WebCom’s fault tolerance and load balancing strategies.

Condensed Graph, Fig. 5. Even the name of the job could be dynamically uncov-
ered. WebCom can interrogate the targeted grid to ensure the required resources
are available before the node is sent for execution, or it may request the targeted
grid to notify it when the required resources are ready. Alternatively, the node can
be sent and put in a wait state until all resources are available. Using WebCom to
schedule grid jobs in this manner also allows the utilisation of it’s fault tolerance
mechanisms[23]. This is used to reschedule any applications targeted to the grid that
may have failed. Therefore, once WebCom initiates a job it will complete provided
the resources eventually become available.

By using WebCom, a whole grid can be viewed as a single WebCom unit with a
specific computation engine plugin. This evolution of WebCom is the first step of
producing a grid-enabled middleware: WebCom-G.

Multiple grids are themselves viewed as independent WebCom-G units. When an
instruction is sent to WebCom-G all the information is supplied to either dynamically
create and invoke an RSL script or to execute the job directly.

When a WebCom-G unit receives an instruction it is passed to the grid engine
module. This module unwraps the instruction, creates the RSL script and directs the
gatekeeper to execute it. Once the Gatekeeper has completed execution, the result is
passed back to the unit that generated the instruction, Fig. 6. As WebCom-G uses
the underlying grid architectures, failures are detected only at the higher level. In
this case WebCom-G’s fault tolerance will cause the complete job to be re scheduled.

A WebCom compute engine plugin is implemented as a module that interacts with
WebCom via a well defined interface. This gives a platform independent grid compute
engine. Although a Condensed Graph may be developed on a platform that is not grid
enabled, the execution of grid operations will be targeted to grid enabled platforms.
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Figure 6: WebCom-G: The Condensed Graphs compute engine plugin is replaced by
the grid compute engine plugin. A targeted grid instruction is received by the compute
engine. This dynamically creates the RSL file. The compute engine then causes the
RSL script to be executed on the gatekeeper.

4 WEBCOM-G OS

The WebCom-G Operating System is proposed as a Grid Operating System. It is
modular and constructed around a WebCom kernel, offering a rich suite of features
to enable the Grid. It will utilise the tested benefits of the WebCom metacomputer
and will leverage existing grid technologies such as Globus and MPI. The aim of the
WebCom-G OS is to hide the low level details from the programmer while providing
the benefits of distributed computing.

Resources in a heterogeneous environment like the Grid join and leave at times
of their choosing. Gathering information and analyzing resources is important for
resource management, scheduling, load balancing and fault tolerance. To build strict
models (process management models, programming models, service oriented models)
for quality of service, a proper Grid Operating System is needed. As with most oper-
ating systems there will be various components to provide the required functionality.

This section describes how WebCom-G retrieves resource information from a het-
erogeneous environment and how it will use this information in conjunction with
its resource management techniques to provide a home for different models which
promise Quality of Service. Different methods for gathering and analyzing resource
information to improve the Quality of Service requirement are discussed. A statistics
analyser is introduced, which forms the basis for evaluating the costs of executing
jobs on the grid. Finally, a comparison with Globus approach to static and dynamic
information gathering is made.

The WebCom-G Operating System (Fig. 7) is designed to operate between the



system hardware and any installed grid middleware. It will interoperate with Globus
(Versions 2.4 & 3) and with other middlewares such as PVM[13, 35], MPI[18, 19]
and will work with standalone products such as Distributed.Net[6] and Seti@Home
[2] clients.

WebCom−G Operating System

Grid Middleware − (Globus, MPI, PVM etc)

Hardware

Figure 7: WebCom-G extends the operating system functionality of the native hard-
ware, interfacing with traditional Grid middleware.

The WebCom-G Operating System, illustrated in Fig. 8, is designed to be mod-
ular. This design allows WebCom-G to be used in a number of different contexts –
e.g., where WebCom-G is the only grid middleware installed, or to co-exist with say
Globus, or MPI or both. If the system is configured to consist of multiple middle-
wares, each with its own information provider service, WebCom-G will automatically
choose between them based on specific requirements of the application. However,
the decision can be overridden by the programmer. WebCom-G will be able to treat
different middlewares and users as Vitrual Organisations, giving it control over task
priorities.

4.1 Components of the WebCom-G OS

Economy Status Analyser
The Economy Status Analyzer is a plug-in which gets the overall resource status of
the machines comprising the grid from either the stats daemon or the information
manager in a WebCom-G system or from the WIS if other information gathering
middlewares (such as GRIS & GIIS & Ganglia in case of Globus) are present. This
module will use various algorithms to evaluate independent cost and total cost of uti-
lization. Scheduling compute intensive, time critical and data intensive jobs depends
on accurate and timely updates of resources. Based on this inforamtion, the ESA
calculates the cost of executing the job. The quality of this service depends critically
on the reported status information.

Stats Daemon
The Stats Daemon is a Linux daemon or Windows service, and uses standard system
calls to retrieve system information - the Linux sysinfo kernel command or standard
MFC function calls on Windows. It logs system usage to the hard drive, using one of
several strategies e.g., fifo fixed filesize logging.

WebCom-G Information Module
The WebCom-G Information System (WIS) is the information gathering module
within the WebCom-G OS. It consists of three parts, a low-level stats daemon to run
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Figure 8: WebCom-G OS architecture

directly on the hardware, a higher-level Information Manager, which can be aware of
multiple hosts, and the WIS proper, which is capable of communicating with a single
stats daemon, with an Information Manager or with Globus via the GIIS.

Grid Administration
The Grid Administration tool will allow administration by user or middleware. It will
be possible to dynamically renice processes when unfair CPU allocation occurs, or to
give priorities to particular jobs. Processes launched across the grid will be monitored
and recorded, allowing the cluster manager to charge accordingly, or to prove quality
of service or even to renice the processes on demand (allowing the user to purchase
more CPU time or a higher priority).

5 WEBCOM-G IS

The WebCom-G Information Gathering Module (Fig. 9 consists of three compo-
nents: (1) The Stats Daemon (2) The Information Manager and (3) the WIS

The Stats Daemon sits on the hardware and reports to the Information Manager.
The WIS sits above the Information Manager and so the WIS can choose to commu-
nicate with either the Stats Daemon directly (if it’s only talking to a single machine)
or it can talk to an Information Manager (which is a promoted stats daemon and so
would have information about more than one machine) or to a third party information
service provider such as a Globus GIIS. (see Fig. 10)
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Figure 9: Architecture of the WebCom-G Information Gathering Module

The Stats Daemon The Stats Daemon is an independent entity residing on the
hardware, which gathers system information. It records information on the CPU load,
the RAM (total+used), Pagefiles (total+used), Hard Drives (total+used), Architec-
ture, Processes running, Users, Networking and Kernel version. The Stats Daemon
records system information to log files stored on the localhost and provides them over
TCP/IP in XML or raw binary format.

The Information Manager The Information Manager module provides detailed run-
time and system information about a number of machines. It communicates with one
or more Stats Daemons, gathering stats on each machine. It then sorts and partitions
the data as required - e.g., giving an average machine load over a cluster for the Grid
Administration module. It is possible to partition the information returned by mid-
dleware, person or uid and by machines or sub-clusters. This information can then
be used by other WebCom-G modules, such as the Load Balancer or by the ESA.
Retrieval of information at a given time period (e.g., given a time scale) is essential
to determine the nature and health of connected resources and to execute jobs. The
system of collection of data at fixed times may not be suitable for heterogeneous en-
vironments, which consist of dynamically changing resources. However, this method
can be suitable for homogeneous nodes. It is also advantageous where the network
load is high, since this model does not use any of the Globus services. Moreover, this
information enables the WebCom Scheduler to execute a (less critical) job request on
a more suitable resource.

WIS The WIS is the highest-level component of the WebCom-G Information Gath-
ering Module. It will be able to query Globus to retrieve information (see Fig. 10)
supplied by Globus through the GIIS and Ganglia (i.e. CPU loads, memory usage
etc). It will do this through one of two methods - either by building a new information
provider to work with the GRIS or through the use of Commodity Grid kits (e.g.,
Java Cog Kit), which allow access to the information via the Globus Frame work.

The WIS provides a Java based GUI for Unix and an MFC based one for Windows.
Each WebCom-G enabled machine will have the WebCom-G stats daemon running.

The daemon will provide similar functionality to Globus, but will not rely on a single
centralised stats server (GRIS, GIIS). Instead, it will use the client promotion feature
of WebCom. This allows any client to be promoted to a master. Any Stats Daemon
can be promoted to become an Information Manager. This Information Manager can
then retrieve information about the cluster in which it is situated. This will eliminate
bottlenecks and provide multiple entry points for clusters. Also the user can specify
a ”sub-cluster” within in a cluster and only retrieve information from and interact
with those listed machines.
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Figure 10: WIS interopability with Globus

5.1 Globus Information Gathering

The Grid is a large distributed computing system formed by tightly or loosely cou-
pled computers following a common set of rules for sharing, authentication and job
execution thus enabling the creation of virtual organizations within the Grid envi-
ronment. The Grid is build up of many virtual organizations; resource information
about individual systems building the Grid plays an important role in load balancing,
resource allocation & re-allocation and execution of jobs within them.

In the case of tightly coupled computers such as Clusters of Workstations there is
central information such as the Network Information Service, which stores information
about all the individual nodes forming the cluster. In the case of the Grid, information
is hosted through information services. Information is the most crucial part of any
Grid or meta-computing system. Information about the Grid system can be acquired
through information services hosted at different levels in the Grid systems.

Globus is a collection of services toolkit (reference1) used to build computational
Grids. The Grid built using Globus toolkit is formed of three supporting layers
(reference 2) (1) Information service (2) Data Management services (3) Management
services all under one security service. Information services provide information about
Grid resources using utilities such as MDS, GRIS, and GIIS.

MDS, at the top level pinnacle provides information directory services for a Grid
built using the Globus toolkit. It can be queried to discover the properties of the ma-
chines, (architectures, networks, processor availability, bandwidth and disk space).
GRIS is a standard information service, which runs on all resources; it interfaces
with LDAP and provides information about the resources. GRIS, the core informa-
tion provider for MDS provides the resource information of the local system which



includes platform type and instruction set architecture, OS version and type, CPU
information, Memory, Network interface information and file system summary. Each
compute node on the Globus grid runs a GRIS acting as white pages. The GIIS
acts as a caching service for searching. Resources register with a GIIS, which in turn
publishes the information when requested by the client. MDS uses an LDAP server
and (via LDAP protocol and schema) interface for querying, generating, publishing,
storing, searching and displaying of such middleware information. Thus the MDS
provides tools necessary to build an LDAP based information tree for computational
grids. GIIS provides a level of combining individual GRIS services to provide a single
system image forming aggregate index service. Thus the GIIS forms yellow pages pro-
viding collective indexing and searching function of all the computational resources
available in a Grid environment and across multiple virtual organizations forming the
Grid.

5.2 Comparing WIS and Globus

SENSORSHARDWARE
RUNNINGON

HARDWARE

DAEMONS GRIS

GIISWIS

Infoprovider
Program

APPLICATIONS

KernelHardware

Sensors or Probes

Kernel

or Information providers

Applications

Service (GIIS)

Grid Index Information 

Grid Resource 

Information Service (GRIS)

Figure 11: Flow of control and lookup initiation in WebCom-G and Globus

The application programmer must explicitly use the services provided by the Globus
Toolkit to schedule his job. This must be done this at compile time - where the
application is coded. Within the WebCom-G system, control is handed over to the
WebCom-G kernel, which will automatically seek out necessary information from
available services at runtime and will schedule the job accordingly. The application
programmer does not need to specify how this is to be done, nor does he need to
know how to do it.

Globus and WIS differ in ’lookup initiation’ and flow of control (see Fig. 11). In
Globus the application programmer specifies the services to be invoked whereas in
WIS the kernel will initiate lookups and choose the service to be invoked.



Globus relies on a single server - the GIIS to coordinate information gathering.
This can lead to bottlenecks and provides a single point-of-failure. The WIS approach
of promoting Stats Daemons to Information Managers avoids the problem of single
point-of-failures.

6 FUTURE WORK

Solutions must be developed to free application programmers from the low level
complexity of parallel programming in Grid environments. In effect, Grid program-
ming environments must evolve to a point where Grid (and, in general, parallel)
programmers are freed from architecture details such as data locality, machine avail-
ability, inter-task synchronisation, communication topologies, task load-balancing,
and fault tolerance - in the same manner as present day sequential programmers are
freed from explicit memory management, disk access protocols and process schedul-
ing. At that point, the grid middleware will adopt the character of a grid operating
system and many, if not all, of the issues that make grid programming difficult will
no longer reside in the domain of the application developer.

This paper presents the evolution of WebCom, from a metacomputer to middle-
ware, to a Grid middleware, to a Grid Operating System, and details our initial
investigations into marshalling Globus tasks. It outlines the WebCom-G Information
System and it’s interoperability with Globus.

The goal of the WebCom-G Operating System is to hide the Grid, by providing a
vertically integrated solution from application to hardware while maintaining inter-
operability with existing Grid technologies. In addition to maintaining a vertically
integrated solution, the available services will be exploited to increase functionality
and effect interoperability.

The provision of such a Grid Operating System will remove much of the complexity
from the task of the application developer.
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